Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 64

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Physical property investigation of gloves for glove boxes in nuclear fuel reprocessing plants; Physical properties of used gloves and estimation of its life-time

Yamamoto, Masahiko; Nishida, Naoki; Kobayashi, Daisuke; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kitao, Takahiko; Kuno, Takehiko

JAEA-Technology 2023-004, 30 Pages, 2023/06


Glove-box gloves, that are used for handling nuclear fuel materials at the Tokai Reprocessing Plant (TRP) of the Japan Atomic Energy Agency, have an expiration date by internal rules. All gloves are replaced at a maximum of every 4-year. However, degrees of glove deterioration varies depending on its usage environment such as frequency, chemicals, and radiation dose. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured and technical evaluation method for the glove life-time is established. It was found that gloves without any defects in its appearance have enough physical properties and satisfies the acceptance criteria values of new gloves. Thus, it was considered that the expired gloves could be used for total of 8-year, by adding 4-year of new glove life-time. In addition, the results of extrapolation by plotting the glove's physical properties versus the used years showed that the physical properties at 8-year is on the safer side than the reported physical properties of broken glove. Also, the data are not significantly different from the physical properties of the long-term storage glove (8 and 23 years). Based on these results, life-time of gloves at TRP is set to be 8-year. The frequency of glove inspections are not changed, and if any defects is found, the glove is promptly replaced. Thus, the risk related to glove usage is not increased. The cost of purchasing gloves, labor for glove replacement, and the amount of generated waste can be reduced by approximately 40%, respectively, resulting in more efficient and rationalized glove management.

Journal Articles

The Damage analysis for irradiation tolerant spin-driven thermoelectric device based on single-crystalline Y$$_3$$Fe$$_5$$O$$_{12}$$/Pt heterostructures

Ieda, Junichi; Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Saito, Eiji

IEEE Transactions on Magnetics, 58(8), p.1301106_1 - 1301106_6, 2022/08

 Times Cited Count:1 Percentile:34.89(Engineering, Electrical & Electronic)

The combination of spin-driven thermoelectric (STE) devices based on spin Seebeck effect (SSE), and radioactive isotopes as heat sources, has potential as a next-generation method of power generation in applications such as power supplies for space probes. However, there has been very limited knowledge available indicating the irradiation tolerance of spin thermoelectric devices. Through analysis using a heavy ion-beam accelerator and the hard X-ray photoemission spectroscopy (HAXPES) measurements, we show that a prototypical STE device based on Y$$_3$$Fe$$_5$$O$$_{12}$$/Pt heterostructures has tolerance to irradiation of high-energy heavy-ion beams. We used 320 MeV gold ion beams modeling cumulative damages due to fission products emitted from the surface of spent nuclear fuels. By varying the dose level, we confirmed that the thermoelectric and magnetic properties of the SSE elements are not affected by the ion-irradiation dose up to $$10^{10}$$ ions/cm$$^2$$ fluence and that the SSE signal is extinguished around $$10^{12}$$ ions/cm$$^2$$, in which the ion tracks almost fully cover the sample surface. In addition, the HAXPES measurements were performed to understand the effects at the interface of Y$$_3$$Fe$$_5$$O$$_{12}$$/Pt. The HAXPES measurements suggest that the chemical reaction that diminishes the SSE signals is enhanced with the increase of the irradiation dose. We share the current understandings of the damage analysis in Y$$_3$$Fe$$_5$$O$$_{12}$$/Pt for developing better STE devices applicable to harsh environmental usages.

Journal Articles

Investigation of physical properties of glove for glove-box and estimation of its life-time

Kobayashi, Daisuke; Yamamoto, Masahiko; Nishida, Naoki; Miyoshi, Ryuta; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kato, Keisuke; Nishino, Saki; Kuno, Takehiko; Kitao, Takahiko; et al.

Nihon Hozen Gakkai Dai-18-Kai Gakujutsu Koenkai Yoshishu, p.237 - 240, 2022/07

All gloves attached to glove-box in Tokai Reprocessing Plant have a fixed expiration date and have to be replaced every 4-year. However, degrees of glove deterioration are different depending on its usage environment (frequency, chemicals, radiation, etc.), because of rubber products. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured, and the life-time of gloves are estimated. As a result, gloves without any defects in its appearance have enough physical property for acceptance criteria of new glove. The extrapolated physical property of glove is sufficiently larger than the reported values of damaged glove. No deterioration in physical properties of gloves, that are periodically replaced without any defects in its appearance, is observed and the usable life-time of the glove is estimated to be 8 years.

Journal Articles

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Analysis of residual stress in steel bar processed by cold drawing and straightening

Nishida, Satoru*; Nishino, Soichiro*; Sekine, Masahiko*; Oka, Yuki*; Harjo, S.; Kawasaki, Takuro; Suzuki, Hiroshi; Morii, Yukio*; Ishii, Yoshinobu*

Materials Transactions, 62(5), p.667 - 674, 2021/05

 Times Cited Count:2 Percentile:22(Materials Science, Multidisciplinary)

Journal Articles

Homogeneity of neutron transmission imaging over a large sensitive area with a four-channel superconducting detector

Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01

 Times Cited Count:3 Percentile:34.6(Physics, Applied)

Journal Articles

Tolerance of spin-Seebeck thermoelectricity against irradiation by swift heavy ions

Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Ieda, Junichi; Saito, Eiji

Journal of Applied Physics, 128(8), p.083902_1 - 083902_7, 2020/08


 Times Cited Count:3 Percentile:22.52(Physics, Applied)

Journal Articles

Kinetic inductance neutron detector operated at near critical temperature

Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07

 Times Cited Count:0 Percentile:0.01

Journal Articles

Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector

Malins, A.; Machida, Masahiko; Vu, TheDang; Aizawa, Kazuya; Ishida, Takekazu*

Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02


 Times Cited Count:6 Percentile:65.87(Instruments & Instrumentation)

Journal Articles

Identification of advanced spin-driven thermoelectric materials via interpretable machine learning

Iwasaki, Yuma*; Sawada, Ryoto*; Stanev, V.*; Ishida, Masahiko*; Kirihara, Akihiro*; Omori, Yasutomo*; Someya, Hiroko*; Takeuchi, Ichiro*; Saito, Eiji; Yorozu, Shinichi*

npj Computational Materials (Internet), 5, p.103_1 - 103_6, 2019/10

 Times Cited Count:38 Percentile:86.51(Chemistry, Physical)

Journal Articles

Machine-learning guided discovery of a new thermoelectric material

Iwasaki, Yuma*; Takeuchi, Ichiro*; Stanev, V.*; Gilad Kusne, A.*; Ishida, Masahiko*; Kirihara, Akihiro*; Ihara, Kazuki*; Sawada, Ryoto*; Terashima, Koichi*; Someya, Hiroko*; et al.

Scientific Reports (Internet), 9, p.2751_1 - 2751_7, 2019/02

 Times Cited Count:50 Percentile:92.63(Multidisciplinary Sciences)

Journal Articles

New precise measurements of muonium hyperfine structure at J-PARC MUSE

Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.

EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01

 Times Cited Count:13 Percentile:99.37

Journal Articles

New precise measurement of muonium hyperfine structure interval at J-PARC

Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11

 Times Cited Count:3 Percentile:86.59

Journal Articles

Gamma radiation resistance of spin Seebeck devices

Yagmur, A.*; Uchida, Kenichi*; Ihara, Kazuki*; Ioka, Ikuo; Kikkawa, Takashi*; Ono, Madoka*; Endo, Junichi*; Kashiwagi, Kimiaki*; Nakashima, Tetsuya*; Kirihara, Akihiro*; et al.

Applied Physics Letters, 109(24), p.243902_1 - 243902_4, 2016/12

 Times Cited Count:3 Percentile:15.62(Physics, Applied)

Thermoelectric devices based on the spin Seebeck effect (SSE) were irradiated with gamma ($$gamma$$) rays with the total dose of around 3$$times$$10$$^{5}$$ Gy in order to investigate the $$gamma$$-radiation resistance of the devices. To demonstrate this, Pt/Ni$$_{0.2}$$Zn$$_{0.3}$$Fe$$_{2.5}$$O$$_{4}$$/Glass and Pt/Bi$$_{0.1}$$Y$$_{2.9}$$Fe$$_{5}$$O$$_{12}$$/Gd$$_{3}$$Ga$$_{5}$$O$$_{12}$$ SSE devices were used. We confirmed that the thermoelectric, magnetic, and structural properties of the SSE devices are not affected by the $$gamma$$-ray irradiation. This result demonstrates that SSE devices are applicable to thermoelectric generation even in high radiation environments.

Journal Articles

New muonium HFS measurements at J-PARC/MUSE

Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12

 Times Cited Count:7 Percentile:91.99

Journal Articles

Thermoelectric generation based on spin Seebeck effects

Uchida, Kenichi*; Adachi, Hiroto; Kikkawa, Takashi*; Kirihara, Akihiro*; Ishida, Masahiko*; Yorozu, Shinichi*; Maekawa, Sadamichi; Saito, Eiji*

Proceedings of the IEEE, 104(10), p.1946 - 1973, 2016/10

 Times Cited Count:205 Percentile:99.23(Engineering, Electrical & Electronic)

Journal Articles

Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films

Kirihara, Akihiro*; Kondo, Koichi*; Ishida, Masahiko*; Ihara, Kazuki*; Iwasaki, Yuma*; Someya, Hiroko*; Matsuba, Asuka*; Uchida, Kenichi*; Saito, Eiji; Yamamoto, Naoharu*; et al.

Scientific Reports (Internet), 6, p.23114_1 - 23114_7, 2016/03

 Times Cited Count:60 Percentile:90.95(Multidisciplinary Sciences)

Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni$$_{0.2}$$Zn$$_{0.3}$$Fe$$_{2.5}$$O$$_4$$ film which was formed on a flexible plastic sheet using a spray-coating method known as ferrite plating. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin- current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

Journal Articles

Enhancement of spin-Seebeck effect by inserting ultra-thin Fe$$_{70}$$Cu$$_{30}$$ interlayer

Kikuchi, Daisuke*; Ishida, Masahiko*; Uchida, Kenichi*; Qiu, Z.*; Murakami, T.*; Saito, Eiji

Applied Physics Letters, 106(8), p.082401_1 - 082401_4, 2015/02

 Times Cited Count:28 Percentile:74.72(Physics, Applied)

Journal Articles

Longitudinal spin Seebeck effect; From fundamentals to applications

Uchida, Kenichi*; Ishida, Masahiko*; Kikkawa, Takashi*; Kirihara, Akihiro*; Murakami, Tomoo*; Saito, Eiji

Journal of Physics; Condensed Matter, 26(34), p.343202_1 - 343202_15, 2014/08

 Times Cited Count:196 Percentile:84.79(Physics, Condensed Matter)

Journal Articles

Spin-current-driven thermoelectric coating

Kirihara, Akihiro*; Uchida, Kenichi*; Kajiwara, Yosuke*; Ishida, Masahiko*; Nakamura, Yasunobu*; Manako, Takashi*; Saito, Eiji; Yorozu, Shinichi*

Nature Materials, 11(8), p.686 - 689, 2012/08

 Times Cited Count:236 Percentile:98.62(Chemistry, Physical)

64 (Records 1-20 displayed on this page)