Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Masahiko; Nishida, Naoki; Kobayashi, Daisuke; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kitao, Takahiko; Kuno, Takehiko
JAEA-Technology 2023-004, 30 Pages, 2023/06
Glove-box gloves, that are used for handling nuclear fuel materials at the Tokai Reprocessing Plant (TRP) of the Japan Atomic Energy Agency, have an expiration date by internal rules. All gloves are replaced at a maximum of every 4-year. However, degrees of glove deterioration varies depending on its usage environment such as frequency, chemicals, and radiation dose. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured and technical evaluation method for the glove life-time is established. It was found that gloves without any defects in its appearance have enough physical properties and satisfies the acceptance criteria values of new gloves. Thus, it was considered that the expired gloves could be used for total of 8-year, by adding 4-year of new glove life-time. In addition, the results of extrapolation by plotting the glove's physical properties versus the used years showed that the physical properties at 8-year is on the safer side than the reported physical properties of broken glove. Also, the data are not significantly different from the physical properties of the long-term storage glove (8 and 23 years). Based on these results, life-time of gloves at TRP is set to be 8-year. The frequency of glove inspections are not changed, and if any defects is found, the glove is promptly replaced. Thus, the risk related to glove usage is not increased. The cost of purchasing gloves, labor for glove replacement, and the amount of generated waste can be reduced by approximately 40%, respectively, resulting in more efficient and rationalized glove management.
Ieda, Junichi; Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Saito, Eiji
IEEE Transactions on Magnetics, 58(8), p.1301106_1 - 1301106_6, 2022/08
Times Cited Count:1 Percentile:34.89(Engineering, Electrical & Electronic)The combination of spin-driven thermoelectric (STE) devices based on spin Seebeck effect (SSE), and radioactive isotopes as heat sources, has potential as a next-generation method of power generation in applications such as power supplies for space probes. However, there has been very limited knowledge available indicating the irradiation tolerance of spin thermoelectric devices. Through analysis using a heavy ion-beam accelerator and the hard X-ray photoemission spectroscopy (HAXPES) measurements, we show that a prototypical STE device based on YFe
O
/Pt heterostructures has tolerance to irradiation of high-energy heavy-ion beams. We used 320 MeV gold ion beams modeling cumulative damages due to fission products emitted from the surface of spent nuclear fuels. By varying the dose level, we confirmed that the thermoelectric and magnetic properties of the SSE elements are not affected by the ion-irradiation dose up to
ions/cm
fluence and that the SSE signal is extinguished around
ions/cm
, in which the ion tracks almost fully cover the sample surface. In addition, the HAXPES measurements were performed to understand the effects at the interface of Y
Fe
O
/Pt. The HAXPES measurements suggest that the chemical reaction that diminishes the SSE signals is enhanced with the increase of the irradiation dose. We share the current understandings of the damage analysis in Y
Fe
O
/Pt for developing better STE devices applicable to harsh environmental usages.
Kobayashi, Daisuke; Yamamoto, Masahiko; Nishida, Naoki; Miyoshi, Ryuta; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kato, Keisuke; Nishino, Saki; Kuno, Takehiko; Kitao, Takahiko; et al.
Nihon Hozen Gakkai Dai-18-Kai Gakujutsu Koenkai Yoshishu, p.237 - 240, 2022/07
All gloves attached to glove-box in Tokai Reprocessing Plant have a fixed expiration date and have to be replaced every 4-year. However, degrees of glove deterioration are different depending on its usage environment (frequency, chemicals, radiation, etc.), because of rubber products. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured, and the life-time of gloves are estimated. As a result, gloves without any defects in its appearance have enough physical property for acceptance criteria of new glove. The extrapolated physical property of glove is sufficiently larger than the reported values of damaged glove. No deterioration in physical properties of gloves, that are periodically replaced without any defects in its appearance, is observed and the usable life-time of the glove is estimated to be 8 years.
Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08
Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)Nishida, Satoru*; Nishino, Soichiro*; Sekine, Masahiko*; Oka, Yuki*; Harjo, S.; Kawasaki, Takuro; Suzuki, Hiroshi; Morii, Yukio*; Ishii, Yoshinobu*
Materials Transactions, 62(5), p.667 - 674, 2021/05
Times Cited Count:2 Percentile:22(Materials Science, Multidisciplinary)Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01
Times Cited Count:3 Percentile:34.6(Physics, Applied)Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Ieda, Junichi; Saito, Eiji
Journal of Applied Physics, 128(8), p.083902_1 - 083902_7, 2020/08
Times Cited Count:3 Percentile:22.52(Physics, Applied)Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07
Times Cited Count:0 Percentile:0.01Malins, A.; Machida, Masahiko; Vu, TheDang; Aizawa, Kazuya; Ishida, Takekazu*
Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02
Times Cited Count:6 Percentile:65.87(Instruments & Instrumentation)Iwasaki, Yuma*; Sawada, Ryoto*; Stanev, V.*; Ishida, Masahiko*; Kirihara, Akihiro*; Omori, Yasutomo*; Someya, Hiroko*; Takeuchi, Ichiro*; Saito, Eiji; Yorozu, Shinichi*
npj Computational Materials (Internet), 5, p.103_1 - 103_6, 2019/10
Times Cited Count:38 Percentile:86.51(Chemistry, Physical)Iwasaki, Yuma*; Takeuchi, Ichiro*; Stanev, V.*; Gilad Kusne, A.*; Ishida, Masahiko*; Kirihara, Akihiro*; Ihara, Kazuki*; Sawada, Ryoto*; Terashima, Koichi*; Someya, Hiroko*; et al.
Scientific Reports (Internet), 9, p.2751_1 - 2751_7, 2019/02
Times Cited Count:50 Percentile:92.63(Multidisciplinary Sciences)Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:13 Percentile:99.37Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:3 Percentile:86.59Yagmur, A.*; Uchida, Kenichi*; Ihara, Kazuki*; Ioka, Ikuo; Kikkawa, Takashi*; Ono, Madoka*; Endo, Junichi*; Kashiwagi, Kimiaki*; Nakashima, Tetsuya*; Kirihara, Akihiro*; et al.
Applied Physics Letters, 109(24), p.243902_1 - 243902_4, 2016/12
Times Cited Count:3 Percentile:15.62(Physics, Applied)Thermoelectric devices based on the spin Seebeck effect (SSE) were irradiated with gamma () rays with the total dose of around 3
10
Gy in order to investigate the
-radiation resistance of the devices. To demonstrate this, Pt/Ni
Zn
Fe
O
/Glass and Pt/Bi
Y
Fe
O
/Gd
Ga
O
SSE devices were used. We confirmed that the thermoelectric, magnetic, and structural properties of the SSE devices are not affected by the
-ray irradiation. This result demonstrates that SSE devices are applicable to thermoelectric generation even in high radiation environments.
Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:91.99Uchida, Kenichi*; Adachi, Hiroto; Kikkawa, Takashi*; Kirihara, Akihiro*; Ishida, Masahiko*; Yorozu, Shinichi*; Maekawa, Sadamichi; Saito, Eiji*
Proceedings of the IEEE, 104(10), p.1946 - 1973, 2016/10
Times Cited Count:205 Percentile:99.23(Engineering, Electrical & Electronic)Kirihara, Akihiro*; Kondo, Koichi*; Ishida, Masahiko*; Ihara, Kazuki*; Iwasaki, Yuma*; Someya, Hiroko*; Matsuba, Asuka*; Uchida, Kenichi*; Saito, Eiji; Yamamoto, Naoharu*; et al.
Scientific Reports (Internet), 6, p.23114_1 - 23114_7, 2016/03
Times Cited Count:60 Percentile:90.95(Multidisciplinary Sciences)Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a NiZn
Fe
O
film which was formed on a flexible plastic sheet using a spray-coating method known as ferrite plating. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin- current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.
Kikuchi, Daisuke*; Ishida, Masahiko*; Uchida, Kenichi*; Qiu, Z.*; Murakami, T.*; Saito, Eiji
Applied Physics Letters, 106(8), p.082401_1 - 082401_4, 2015/02
Times Cited Count:28 Percentile:74.72(Physics, Applied)Uchida, Kenichi*; Ishida, Masahiko*; Kikkawa, Takashi*; Kirihara, Akihiro*; Murakami, Tomoo*; Saito, Eiji
Journal of Physics; Condensed Matter, 26(34), p.343202_1 - 343202_15, 2014/08
Times Cited Count:196 Percentile:84.79(Physics, Condensed Matter)Kirihara, Akihiro*; Uchida, Kenichi*; Kajiwara, Yosuke*; Ishida, Masahiko*; Nakamura, Yasunobu*; Manako, Takashi*; Saito, Eiji; Yorozu, Shinichi*
Nature Materials, 11(8), p.686 - 689, 2012/08
Times Cited Count:236 Percentile:98.62(Chemistry, Physical)