Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 42

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

SIMMER-III and SIMMER-IV; Computer codes for LMFR core disruptive accident analysis

Kondo, Satoru; Tobita, Yoshiharu*; Morita, Koji*; Kamiyama, Kenji; Yamano, Hidemasa; Suzuki, Toru*; Tagami, Hirotaka; Sogabe, Joji; Ishida, Shinya

JAEA-Research 2024-008, 235 Pages, 2024/10

JAEA-Research-2024-008.pdf:4.77MB

The SIMMER-III and SIMMER-IV computer codes, developed at the Japan Atomic Energy Agency are the codes with two- and three-dimensional, multi-field, multi-component fluid-dynamics models, coupled with a space- and time-dependent neutron kinetics model. The codes have been used widely for simulating complex phenomena during core-disruptive accidents in liquid-metal fast reactors. Advanced features of the codes in comparison with the former codes include: stable and robust fluid-dynamics algorithm with up to 8 velocity fields, improved representation of structures and multi-phase flow topology, comprehensive treatment of complex heat and mass transfer processes, accurate analytic equations of state, a stable and efficient neutron flux shape solution method and decay heat model. This report describes the models and methods of SIMMER-III and SIMMER-IV. For those individual models, the details of which have been reported elsewhere, only the outlines of the models are presented. The reports of code verification and validation have been already published.

Journal Articles

France-Japan collaboration on severe accident studies in sodium-cooled fast reactors, 2; Methodologies and calculations of severe accident phases

Sogabe, Joji; Ishida, Shinya; Tagami, Hirotaka; Okano, Yasushi; Kamiyama, Kenji; Onoda, Yuichi; Matsuba, Kenichi; Yamano, Hidemasa; Kubo, Shigenobu; Kubota, Ryuzaburo*; et al.

Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10

In the frame of France-Japan collaboration, the calculational methodologies were defined and assessed, and the phenomenology and the severe accident consequences were investigated in a pool-type sodium-cooled fast reactor.

Journal Articles

France-Japan collaboration on severe accident studies in sodium-cooled fast reactors, 1; Severe accident scenarios assessment

Onoda, Yuichi; Ishida, Shinya; Fukano, Yoshitaka; Kamiyama, Kenji; Yamano, Hidemasa; Kubo, Shigenobu; Shibata, Akihiro*; Bertrand, F.*; Seiler, N.*

Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10

Journal Articles

Numerical simulation of accidents involving core damage with integrative severe accident analysis code, SPECTRA

Ishida, Shinya; Uchibori, Akihiro; Okano, Yasushi

Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2024/06

no abstracts in English

Journal Articles

Numerical study of initiating phase of core disruptive accident in small sodium-cooled fast reactors with negative void reactivity

Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi

Journal of Nuclear Science and Technology, 61(5), p.582 - 594, 2024/05

 Times Cited Count:1 Percentile:31.89(Nuclear Science & Technology)

Journal Articles

Development of severe accident simulation code for sodium-cooled fast reactors: SIMMER-V, 1; Overview of the SIMMER-V code development

Tagami, Hirotaka; Ishida, Shinya; Okano, Yasushi; Yamano, Hidemasa; Kubo, Shigenobu; Payot, F.*; Saas, L.*; Trotignon, L.*; Gubernatis, P.*; Dufour, E.*; et al.

Proceedings of 11th European Review Meeting on Severe Accident Research Conference (ERMSAR 2024) (Internet), 12 Pages, 2024/05

JAEA has been developing the SIMMER-V code in collaboration with CEA to perform severe accident (SA) simulations of future sodium-cooled fast reactors (SFRs) including a unique core design with large-scale heterogeneous cores. An SA sequence in SFRs has been analyzed by: the SAS4A code for the Initiation Phase (IP), in which fuel pin disruption and vertical fuel dispersion occur in individual fuel subassemblies; and the two-dimensional SIMMER-III or three-dimensional SIMMER-IV code for the Transition Phase (TP), in which core disruption extends to the whole core. The joint development of SIMMER-V is of limited scope but aims at significantly expanding the code applicability by providing flexible interfaces to couple a SIMMER-V calculation with other computational domains or other codes, and by adding new advanced physical models such as a detailed fuel pin model and a model of flexible treatment of fuel isotopic composition. The former tasks are conducted by CEA the latter tasks by JAEA. In parallel to the code development, verification and validation of the new models and methods have been performed. This paper describes the objectives and overall framework of SIMMER-V code development program, representative new elements, and recent development progress.

Journal Articles

Development of severe accident simulation code for sodium-cooled fast reactors: SIMMER-V, 2; Development and verification of detailed fuel pin model

Ishida, Shinya; Tagami, Hirotaka; Okano, Yasushi; Yamano, Hidemasa; Kubo, Shigenobu; Tobita, Yoshiharu

Proceedings of 11th European Review Meeting on Severe Accident Research Conference (ERMSAR 2024) (Internet), 10 Pages, 2024/05

Journal Articles

Development of new treatment of fuel isotope vector in the core disruptive accident analysis of fast reactors

Tagami, Hirotaka; Ishida, Shinya; Tobita, Yoshiharu

Journal of Nuclear Science and Technology, 60(12), p.1548 - 1562, 2023/12

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

In a design of future Sodium-cooled Fast Reactor, there is a demand for evaluation of sequences and consequences of core disruptive accidents. Future SFRs include a unique core design with axially or horizontally heterogeneous core arrangement having complex fuel isotope distribution. A new model to flexibly represent fuel isotope distribution, called the Pu-vector model, has been developed in this study for inclusion in the SIMMER-III and SIMMER-IV codes (simply called as SIMMER). The model calculates movement of individual fuel isotopes, assuming they always accompany the convecting fuel in the fluid-dynamics model. The accuracy of the Pu-vector model was confirmed by comparing with the standard Monte Carlo static neutronics calculation. The new model can improve some of the limitations in the current SIMMER code, in which the fuel isotopes are represented only by two groups, fertile and fissile fuels. Assignment of a number of fuel isotopes to the two groups requires a detailed examination of different combinations of fuel isotopes to determine an optimized combination. The Pu-vector model can eliminate this complicated procedure to be performed prior to a SIMMER analysis, and more importantly provides accurate spatial distribution of fuel isotopes and thus will improve the applicability of SIMMER to the analyses of future large heterogeneous reactors.

Journal Articles

Development and verification of detailed fuel pin model in the SIMMER-V code

Ishida, Shinya; Tagami, Hirotaka; Tobita, Yoshiharu; Okano, Yasushi; Yamano, Hidemasa; Kubo, Shigenobu

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

no abstracts in English

Journal Articles

Study on safety characteristics of a sodium-cooled fast reactor with negative void reactivity during initiating phase in severe accident

Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi

Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 8 Pages, 2023/04

Journal Articles

Development of ARKADIA-Safety for severe accident evaluation of sodium-cooled fast reactors

Aoyagi, Mitsuhiro; Sonehara, Masateru; Ishida, Shinya; Uchibori, Akihiro; Kawada, Kenichi; Okano, Yasushi; Takata, Takashi

Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 3 Pages, 2022/09

Journal Articles

Study on initiating phase of core disruptive accident (Validation study of SAS4A code for the unprotected transient overpower accident)

Ishida, Shinya; Fukano, Yoshitaka

Nihon Kikai Gakkai Rombunshu (Internet), 88(911), p.21-00304_1 - 21-00304_11, 2022/07

In previous studies, the reliability and validity of the SAS4A code was enhanced by applying Phenomena Identification and Ranking Table (PIRT) approach to the Unprotected Loss of Flow (ULOF). SAS4A code has been developed to analyze the early stage of Core Disruptive Accident (CDA), which is named Initiating Phase (IP). In this study, PIRT approach was applied to Unprotected Transient over Power (UTOP), which was one of the most important and typical events in CDA as well as ULOF. The phenomena were identified by the investigation of UTOP event progression and physical phenomena relating to UTOP were ranked. 8 key phenomena were identified and the differences in ranking between UTOP and ULOF were clarified. The code validation matrix was completed and an SAS4A model, which was not validated in ULOF, was identified and validated. SAS4A code became applicable to various scenarios by using PIRT approach to UTOP and the reliability and validity of SAS4A code were significantly enhanced.

Journal Articles

Study on initiating phase of core disruptive accident; Identification of important phenomena in initiating phase of unprotected transient overpower accident

Ishida, Shinya; Fukano, Yoshitaka

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

no abstracts in English

Journal Articles

Validation study of SAS4A code for the unprotected loss-of-flow accident in an SFR

Ishida, Shinya; Kawada, Kenichi; Fukano, Yoshitaka

Mechanical Engineering Journal (Internet), 7(3), p.19-00523_1 - 19-00523_17, 2020/06

The Phenomena Identification and Ranking Table (PIRT) approach was applied to the validation of SAS4A code in order to indicate the reliability of SAS4A code sufficiently and objectively. Based on this approach, issue and objective were clarified, plant design and scenario were defined, FOM and key phenomena were selected, and the code validation test matrix was completed with the results of investigation about analysis models and test cases. The results of the test analysis corresponding to this matrix show that the SAS4A models required for the IP evaluation were sufficiently validated. Furthermore, the validation with this matrix is highly reliable, since this matrix represents the comprehensive validation that also considers the relation between physical phenomena. In this study, the reliability and validity of SAS4A code were significantly enhanced by using PIRT approach to the sufficient level for CDA analyses in SFR.

Journal Articles

Validation study of initiating phase evaluation method for the core disruptive accident in an SFR

Ishida, Shinya; Kawada, Kenichi; Fukano, Yoshitaka

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 10 Pages, 2019/05

Core Disruptive Accident (CDA) has been considered as one of the important safety issues in the severe accident evaluation of Sodium-cooled Fast Reactor (SFR), and SAS4A code is developed for Initiating Phase (IP) of CDA. Phenomena Identification and Ranking Table (PIRT) approach was applied to the validation of SAS4A code in order to enhance its reliability in this study. SAS4A was validated in the following steps: (1) selection of the figure of merit (FOM) corresponding to Unprotected Loss Of Flow (ULOF) which is one of the most important and typical events in CDA, (2) identification of the phenomena involved in ULOF, (3) ranking the important phenomena, (4) development of the code validation test matrix, and (5) test analyses for validation corresponding to the test matrix. The reliability and validity of SAS4A code were significantly enhanced by this validation with PIRT approach.

Journal Articles

Advanced analysis technology for new material and product development

Sasaki, Hirokazu*; Nishikubo, Hideo*; Nishida, Shinsuke*; Yamazaki, Satoshi*; Nakasaki, Ryusuke*; Isomatsu, Takemi*; Minato, Ryuichiro*; Kinugawa, Kohei*; Imamura, Akihiro*; Otomo, Shinya*; et al.

Furukawa Denko Jiho, (138), p.2 - 10, 2019/02

no abstracts in English

JAEA Reports

Analysis of FCA VIII-2 fuel slumping experiments by SIMMER-III and SIMMER-IV

Ishida, Shinya; Mizuno, Masahiro*

JAEA-Research 2015-002, 47 Pages, 2015/06

JAEA-Research-2015-002.pdf:7.22MB

An advanced safety analysis computer code, SIMMER-III and SIMMER-IV, has been developed to investigate the complex phenomena under the core disruptive accidents in LMFRs. Fuel slumping experiments performed in the Fast Critical Assembly (FCA) VIII-2 facility were analyzed by SIMMER-III (two dimensions) and SIMMER-IV (three dimensions) in order to validate the neutronics model of the code for the disrupted core analysis. The results of the SIMMER-III and SIMMER-IV analysis (70-group constants from the unified cross-section set ADJ2000R, multi-group transport approximation for the anisotropic scattering, S8 approximation for the discrete-ordinate order) indicated that the SIMMER-III and SIMMER-IV simulated the FCA VIII-2 experiments with sufficient precision. In addition, the parameter surveys showed that the simulation of the FCA VIII-2 experiments with sufficient precision can be performed with the 18-group constants and S4 approximation for the discrete-ordinate order.

Journal Articles

SAS4A analysis of CABRI experiments for validation of axial fuel expansion model

Ishida, Shinya; Sato, Ikken

Proceedings of 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15) (USB Flash Drive), 9 Pages, 2013/05

Journal Articles

Surface speciation of Eu$$^{3+}$$ adsorbed on kaolinite by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC)

Ishida, Keisuke*; Saito, Takumi*; Aoyagi, Noboru; Kimura, Takaumi; Nagaishi, Ryuji; Nagasaki, Shinya*; Tanaka, Satoru*

Journal of Colloid and Interface Science, 374(1), p.258 - 266, 2012/05

 Times Cited Count:36 Percentile:63.09(Chemistry, Physical)

Journal Articles

Hardness modification of aluminum-alloys by means of energetic ion irradiation and subsequent thermal aging

Mitsuda, Tomoaki*; Kobayashi, Ippei*; Kosugi, Shinya*; Fujita, Naoki*; Saito, Yuichi; Hori, Fuminobu*; Semboshi, Satoshi*; Kaneno, Yasuyuki*; Nishida, Kenji*; Soneda, Naoki*; et al.

Nuclear Instruments and Methods in Physics Research B, 272, p.49 - 52, 2012/02

 Times Cited Count:10 Percentile:58.43(Instruments & Instrumentation)

42 (Records 1-20 displayed on this page)