Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:1 Percentile:58.67(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Ha, Yoosung; Shimodaira, Masaki; Takamizawa, Hisashi; Tobita, Toru; Katsuyama, Jinya; Nishiyama, Yutaka
Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 6 Pages, 2021/07
Iwata, Keiko; Hata, Kuniki; Tobita, Toru; Hirota, Takatoshi*; Takamizawa, Hisashi; Chimi, Yasuhiro; Nishiyama, Yutaka
Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 7 Pages, 2021/07
Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.
JAEA-Review 2019-045, 120 Pages, 2020/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2018. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Takamizawa, Hisashi; Katsuyama, Jinya; Ha, Yoosung; Tobita, Toru; Nishiyama, Yutaka; Onizawa, Kunio
Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 8 Pages, 2019/07
no abstracts in English
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; et al.
JAEA-Review 2018-028, 120 Pages, 2019/02
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2017. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Yuguchi, Takashi*; Sueoka, Shigeru; Iwano, Hideki*; Izumino, Yuya*; Ishibashi, Masayuki; Danhara, Toru*; Sasao, Eiji; Hirata, Takafumi*; Nishiyama, Tadao*
Journal of Asian Earth Sciences, 169, p.47 - 66, 2019/01
Times Cited Count:14 Percentile:69.07(Geosciences, Multidisciplinary)This study presents position-by-position paths within a granitic pluton based on thermochronological data, and describes their constraints and their relationship with fracture frequency, as an example from the Toki granite, central Japan. The cooling paths have position-specific characteristics; a single
path does not represent the cooling behavior of the entire pluton. Such position-specific
paths enable us to evaluate three-dimensional thermal evolution within the granitic pluton, and thus can clarify the detailed formation history of the entire pluton after the incipient intrusion of the granitic magma into the shallow crust. This study reveals the relationship between position-specific
paths and fracture frequency, and thus provides a criterion for evaluating the fracture population in terms of thermal stress.
Tobita, Toru; Nishiyama, Yutaka; Onizawa, Kunio
JAEA-Data/Code 2018-013, 60 Pages, 2018/11
Mechanical properties of materials including fracture toughness are extremely important for evaluating the structural integrity of reactor pressure vessels (RPVs). In this report, the published data of mechanical properties of nuclear RPVs steels, including neutron irradiated materials, acquired by the Japan Atomic Energy Agency (JAEA), specifically tensile test data, Charpy impact test data, drop-weight test data, and fracture toughness test data, are summarized. There are five types of RPVs steels with different toughness levels equivalent to JIS SQV2A (ASTM A533B Class 1) containing impurities in the range corresponding to the early plant to the latest plant. In addition to the base material of RPVs, the mechanical property data of the two types of stainless overlay cladding materials used as the lining of the RPV are summarized as well. These mechanical property data are organized graphically for each material and listed in tabular form to facilitate easy utilization of data.
Ha, Yoosung; Tobita, Toru; Otsu, Takuyo; Takamizawa, Hisashi; Nishiyama, Yutaka
Journal of Pressure Vessel Technology, 140(5), p.051402_1 - 051402_6, 2018/10
Times Cited Count:6 Percentile:31.93(Engineering, Mechanical)Ha, Yoosung; Tobita, Toru; Takamizawa, Hisashi; Hanawa, Satoshi; Nishiyama, Yutaka
Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 6 Pages, 2018/07
Nakano, Masanao; Fujita, Hiroki; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.
JAEA-Review 2017-037, 119 Pages, 2018/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2016. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Chimi, Yasuhiro; Iwata, Keiko; Tobita, Toru; Otsu, Takuyo; Takamizawa, Hisashi; Yoshimoto, Kentaro*; Murakami, Takeshi*; Hanawa, Satoshi; Nishiyama, Yutaka
JAEA-Research 2017-018, 122 Pages, 2018/03
Warm pre-stress (WPS) effect is a phenomenon that after applying a load at a high temperature fracture does not occur in unloading during cooling, and then the fracture toughness in reloading at a lower temperature increases effectively. Engineering evaluation models to predict an apparent fracture toughness in reloading are established using experimental data with linear elasticity. However, there is a lack of data on the WPS effect for the effects of specimen size and surface crack in elastic-plastic regime. In this study, fracture toughness tests were performed after applying load-temperature histories which simulate pressurized thermal shock transients to confirm the WPS effect. The experimental results of an apparent fracture toughness tend to be lower than the predictive results using the engineering evaluation models in the case of a high degree of plastic deformation in preloading. Considering the plastic component of preloading can refine the engineering evaluation models.
Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:3 Percentile:87.03Yuguchi, Takashi*; Sueoka, Shigeru; Iwano, Hideki*; Danhara, Toru*; Ishibashi, Masayuki; Sasao, Eiji; Nishiyama, Tadao*
Island Arc, 26(6), p.e12219_1 - e12219_15, 2017/11
Times Cited Count:11 Percentile:43.96(Geosciences, Multidisciplinary)The spatial distribution of AFT age in the granitic body is a favorable key to reveal a cooling behavior of the whole pluton. The cooling behavior is attributable to the regional exhumation of the Toki granite related to the regional denudation of the Tono district. Combination of the AERs and AFT inverse model applying to the granite is a powerful procedure for evaluating the cooling and exhumation history of the granitic pluton and thus denudation history of the tectonic region that surrounded the rock body.
Ha, Yoosung; Tobita, Toru; Takamizawa, Hisashi; Nishiyama, Yutaka
Proceedings of 2017 ASME Pressure Vessels and Piping Conference (PVP 2017) (CD-ROM), 5 Pages, 2017/07
The applicability of miniature-C(T) (Mini-C(T)) specimens to fracture toughness evaluation was investigated for neutron-irradiated reactor pressure vessel (RPV) steel. value determined from irradiated Mini-C(T) specimens was in good agreement with that determined from the irradiated pre-cracked Charpy-type (PCCv) specimens. Also, the scatter of the 1T-equivalent fracture toughness values obtained from the irradiated Mini-C(T) specimens was not significantly different from that obtained from the irradiated PCCv.
values determined from Mini-C(T) specimens agreed very well with the correlation between Charpy 41J transition temperature and
of commercially manufactured RPV steels.
Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Nagaoka, Mika; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.
JAEA-Review 2017-001, 115 Pages, 2017/03
Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2015. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:92.26Mukai, Satoru*; Umehara, Ryuji*; Hanawa, Satoshi; Kasahara, Shigeki; Nishiyama, Yutaka
Proceedings of 20th International Conference on Water Chemistry of Nuclear Reactor Systems (NPC 2016) (USB Flash Drive), 9 Pages, 2016/10
In Japanese PWR, the concentration of dissolved hydrogen in the primary coolant is controlled in the range from 25 cc/kg-HO to 35 cc/kg-H
O for suppression of water decomposition. However this concentration is desired to reduce for the purpose of radiation source reduction in Japan. So, the concentration due to water radiolysis in primary coolant was evaluated at lower hydrogen concentration by the water radiolysis model in consideration of
ray, fast neutron and alpha ray due to the reaction
B(n,
)
Li. The results of evaluation showed that the water radiolysis was suppressed even if the hydrogen concentration was decreased to 5 cc/kg-H
O. The effects of the different G-value and the rate constants of major reaction on the concentration of H
O
and O
were studied under hydrogen addition. We also focused on the effect of the alpha radiolysis in boron acid water.
Iwata, Keiko; Tobita, Toru; Takamizawa, Hisashi; Chimi, Yasuhiro; Yoshimoto, Kentaro*; Nishiyama, Yutaka
Proceedings of 2016 ASME Pressure Vessels and Piping Conference (PVP 2016) (Internet), 6 Pages, 2016/07
The effect of warm pre-stressing (WPS) on fracture toughness was evaluated for a reactor pressure vessel steel. Various types of thermomechanical loadings were applied to 1T-CT specimens. The results were compared with predictions from several analytical WPS engineering models. The specimen size effect was subsequently investigated under the load-unload-cool-fracture transient condition using 1T-, 0.4T-, and 0.16T-CT specimens. Analyses of the plastic zone distribution and residual stress were conducted to identify the difference in the WPS effect among the specimens.
Yuguchi, Takashi*; Iwano, Hideki*; Kato, Takenori*; Sakata, Shuhei*; Hattori, Kentaro*; Hirata, Takafumi*; Sueoka, Shigeru; Danhara, Toru*; Ishibashi, Masayuki; Sasao, Eiji; et al.
Journal of Mineralogical and Petrological Sciences, 111(1), p.9 - 34, 2016/02
Times Cited Count:16 Percentile:56.02(Mineralogy)Zircon growth collected from a granitic pluton shows four (1st - 4th) events with specific mechanisms, crystallization temperatures and U-Pb ages, revealing the sequential formation process from intrusion through emplacement to crystallization / solidification. The events are recognized by: (1) internal structure of zircon based on the cathodoluminescence observation, (2) crystallization temperatures by the Ti-in-zircon thermometer in the internal structure and (3) U-Pb ages in the internal structure.