Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 157

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Radiocesium-bearing microparticles cause a large variation in $$^{137}$$Cs activity concentration in the aquatic insect ${it Stenopsyche marmorata}$ (Tricoptera: Stenopsychidae) in the Ota River, Fukushima, Japan

Ishii, Yumiko*; Miura, Hikaru*; Jo, J.*; Tsuji, Hideki*; Saito, Rie; Koarai, Kazuma; Hagiwara, Hiroki; Urushidate, Tadayuki*; Nishikiori, Tatsuhiro*; Wada, Toshihiro*; et al.

PLOS ONE (Internet), 17(5), p.e0268629_1 - e0268629_17, 2022/05

We investigated the variability in $$^{137}$$Cs activity concentration in individual aquatic insects in detritivorous caddisfly (${it Stenopsyche marmorata}$) and carnivorous dobsonfly (${it Protohermes grandis}$) larvae from the Ota River, Fukushima. Caddisfly larvae showed sporadically higher radioactivity, whereas no such outliers were observed in dobsonfly larvae. Autoradiography and scanning electron microscopy analyses confirmed that these caddisfly larvae samples contained radiocesium-bearing microparticles (CsMPs), which are insoluble Cs-bearing silicate glass particles. CsMPs were also found in potential food sources of caddisfly larvae, such as periphyton and drifting particulate organic matter, indicating that larvae may ingest CsMPs along with food particles of similar size. Although CsMPs distribution and uptake by organisms in freshwater ecosystems is relatively unknown, our study demonstrates that CsMPs can be taken up by aquatic insects.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 32 Pages, 2022/02

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Sm valence determination of Sm-based intermetallics using $$^{149}$$Sm M$"{o}$ssbauer and Sm L$$_{rm III}$$-edge X-ray absorption spectroscopies

Tsutsui, Satoshi; Higashinaka, Ryuji*; Nakamura, Raito*; Fujiwara, Kosuke*; Nakamura, Jin*; Kobayashi, Yoshio*; Ito, Takashi; Yoda, Yoshitaka*; Kato, Kazuo*; Nitta, Kiyofumi*; et al.

Hyperfine Interactions, 242(1), p.32_1 - 32_10, 2021/12

Journal Articles

Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms

Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.

Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08

 Times Cited Count:0 Percentile:0.01(Optics)

Journal Articles

Incorporation of U, Pb and rare earth elements in calcite through crystallisation from amorphous calcium carbonate; Simple preparation of reference materials for microanalysis

Miyajima, Yusuke*; Saito, Ayaka*; Kagi, Hiroyuki*; Yokoyama, Tatsunori; Takahashi, Yoshio*; Hirata, Takafumi*

Geostandards and Geoanalytical Research, 45(1), p.189 - 205, 2021/03

 Times Cited Count:0 Percentile:0.01(Geochemistry & Geophysics)

Uncertainty for elemental and isotopic analyses of calcite by LA-ICP-MS is largely controlled by the homogeneity of the reference materials (RMs) used for normalization and validation. In order to produce calcite RMs with homogeneous elemental and isotopic compositions, we incorporated elements including U, Pb, and rare earth elements into calcite through heat- and pressure-induced crystallization from amorphous calcium carbonate that was precipitated from element-doped reagent solution. X-ray absorption spectra showed that U was present as U(VI) in the synthesized calcite, probably with a different local structure from that of aqueous uranyl ions. The uptake rate of U by our calcite was higher in comparison to synthetic calcite of previous studies. Variations of element mass fractions in the calcite were better than 12% 2RSD, mostly within 7%. The $$^{207}$$Pb/$$^{206}$$Pb ratio in the calcite showed $$<$$1% variations, while the $$^{238}$$U/$$^{206}$$Pb ratio showed 3-24% variations depending on element mass fractions. Using the synthetic calcite as primary RMs, we could date a natural calcite RM, WC-1, with analytical uncertainty as low as $$<$$3%. The method presented can be useful to produce calcite with controlled and homogeneous element mass fractions, and is a promising alternative to natural calcite RMs for U-Pb geochronology.

Journal Articles

Reliability of J-PARC accelerator system over the past decade

Yamamoto, Kazami; Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*

JPS Conference Proceedings (Internet), 33, p.011016_1 - 011016_7, 2021/03

The Japan Proton Accelerator Research Complex (J-PARC) is a multipurpose facility for scientific experiments. The accelerator complex consists of a 400-MeV Linac, a 3-GeV Rapid-Cycling Synchrotron (RCS) and a 30-GeV Main Ring synchrotron (MR). The RCS delivers a proton beam to the neutron target and MR, and the MR delivers the beams to the neutrino target and the Hadron Experimental Facility. The first operation of the neutron experiments began in December 2008. Following this, the user operation has been continued with some accidental suspensions. These suspensions include the recovery work due to the Great East Japan Earthquake in March 2011 and the radiation leak incident at the Hadron Experimental Facility. In this report, we summarize the major causes of suspension, and the statistics of the reliability of J-PARC accelerator system is analyzed. Owing to our efforts to achieve higher reliability, the Mean Time Between Failure (MTBF) has been improved.

Journal Articles

First isolation and analysis of caesium-bearing microparticles from marine samples in the Pacific coastal area near Fukushima Prefecture

Miura, Hikaru*; Ishimaru, Takashi*; Ito, Yukari*; Kuribara, Yuichi; Otosaka, Shigeyoshi*; Sakaguchi, Aya*; Misumi, Kazuhiro*; Tsumune, Daisuke*; Kubo, Atsushi*; Higaki, Shogo*; et al.

Scientific Reports (Internet), 11, p.5664_1 - 5664_11, 2021/03

 Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)

For the first time, we isolated and investigated seven CsMPs (radioactive caesium-bearing microparticles) from marine particulate matter and sediment. From the elemental composition, the $$^{134}$$Cs/$$^{137}$$Cs activity ratio, and the $$^{137}$$Cs activity per unit volume results, we inferred that the five CsMPs collected from particulate matter were emitted from Unit 2 of the FDNPP, whereas the two CsMPs collected from marine sediment were possibly emitted from Unit 3. The presence of CsMPs can cause overestimation of the solid-water distribution coefficient of Cs in marine sediments and particulate matter and a high apparent radiocaesium concentration factor for marine biota. CsMPs emitted from Unit 2, which were collected from the estuary of a river that flowed through a highly contaminated area, may have been deposited on land and then transported by the river. By contrast, CsMPs emitted from Unit 3 were possibly transported eastward by the wind and deposited directly onto the ocean surface.

Journal Articles

Measurement of the angular distribution of $$gamma$$-rays after neutron capture by $$^{139}$$La for a T-violation search

Okudaira, Takuya; Shimizu, Hirohiko*; Kitaguchi, Masaaki*; Hirota, Katsuya*; Haddock, C. C.*; Ito, Ikuya*; Yamamoto, Tomoki*; Endo, Shunsuke*; Ishizaki, Kohei*; Sato, Takumi*; et al.

EPJ Web of Conferences, 219, p.09001_1 - 09001_6, 2019/12

Parity violating effects enhanced by up to 10$$^6$$ times have been observed in several neutron induced compound nuclei. There is a theoretical prediction that time reversal (T) violating effects can also be enhanced in these nuclei implying that T-violation can be searched for by making very sensitive measurements. However, the enhancement factor has not yet been measured in all nuclei. The angular distribution of the (n,$$gamma$$) reaction was measured with $$^{139}$$La by using a germanium detector assembly at J-PARC, and the enhancement factor was obtained. From the result, the measurement time to achieve the most sensitive T-violation search was estimated as 1.4 days, and a 40% polarized $$^{139}$$La target and a 70% polarized $$^3$$He spin filter whose thickness is 70 atm$$cdot$$cm are needed. Therefore high quality $$^3$$He spin filter is developed in JAEA. The measurement result of the (n,$$gamma$$) reaction at J-PARC and the development status of the $$^3$$He spin filter will be presented.

Journal Articles

Investigation for tiny metal contamination of water cooling system in J-PARC Linac

Suganuma, Kazuaki; Hiroki, Fumio; Ito, Takashi; Yamazaki, Yoshio

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.846 - 848, 2019/07

In the past, water flow decreased at water cooling system in J-PARC Linac. Contamination get mixed in cooling water. The problem was resolved by changing the system of the circulation pumps and reducing the tiny metal in water cooling system. However, suppression of occurring tiny metal is unresolved. The tiny metal is the unique problem of accelerator. It is caused by heavy using oxygen free copper and phosphorus deoxidized copper. The two copper is used for the part of accelerator and purified water. The object of the report is investigation of tiny metal contamination of water cooling system in J-PARC Linac.

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*; Yamamoto, Noboru*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1235 - 1239, 2019/07

After the summer shutdown in 2018, the J-PARC restarted user operation in late October. While beam power to the Materials and Life Science Experimental Facility (MLF) was 500 kW as before the summer shutdown, linac beam current was increased from 40 to 50 mA. Operation of the Main Ring (MR) was suspended due to the modification and/or maintenance of the Superkamiokande (neutrino detector) and Hadron experimental facility. The user operation was resumed in the middle of February for the Hadron experimental facility at 51 kW. But on March 18, one of the bending magnets in the beam transport line to the MR had a failure. It was temporary recovered and restored beam operation on April 5, but the failure occurred again on April 24 and the beam operation of the MR was suspended. In the fiscal year of 2018, the availabilities for the MLF, neutrino and hadron facilities are 94%, 86%, and 74%, respectively.

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Yamamoto, Noboru*; Koseki, Tadashi*

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2018/08

After the summer shutdown in 2017, the J-PARC restarted user operation in late October. The Materials and Life Science Experimental Facility (MLF) used a spare target and the beam power was limited to 150-200kW. The target was replaced with a new one in the summer shutdown. The beam power was for user operation gradually increased from 300 kW to 500 kW. We have successfully demonstrated 1MW 1hour operation in July 2018. The beam power for the neutrino experimental facility (NU) was 440 kW to 470 kW. The beam was delivered to the hadron experimental facility (HD) from January to February in 2018. The repetition rate of the main ring was shortened from 5.52 to 5.20 seconds, the beam power was increased from 44 to 50 kW. From March 2018, we delivered to the NU at 490 kW stably. In the fiscal year of 2017, the availabilities for the MLF, NU and HD are 93%, 89% and 66%, respectively.

Journal Articles

Present status of water cooling system at J-PARC linac 2018

Suganuma, Kazuaki; Hiroki, Fumio; Ito, Takashi; Yamazaki, Yoshio

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.309 - 311, 2018/08

It is the report to improve the problem of flow reduction in water cooling system resolved completely in summer, 2017. It is continued the phenomenon decreasing the flow (5,800 L/min) of circulating water cooling in DTL and SDTL about 3% per week. By the flow reduction, the entire operation of J-PARC and operation of the accelerator are stopped and low flow contact of flowmeter installed in cavities. The phenomenon is progressed about 9 years since we confirm it and drastic measures for it are aspired. In this report, the point of interest to solve this problem is written. Similarly, it is suggested that the point we should be careful when we use the water cooling system it is one of the utility of J-PARC accelerator. In last summer, the flow reduction is not occur completely as specification changes and replacement of the pumps. Thanks of that, the entire operation and operation of accelerator of J-PARC is operated safety.

Journal Articles

Estimation of mitigation effects of sodium nanofluid for SGTR accidents in SFR

Ichikawa, Kenta*; Kanda, Hironori; Yoshioka, Naoki*; Ara, Kuniaki; Saito, Junichi; Nagai, Keiichi

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 6 Pages, 2018/07

Studies on the suppression of the reactivity of sodium itself have been performed on the basis of the concept of suspended nanoparticles in liquid sodium (sodium nanofluid). According to the experimental and theoretical results of studies for sodium nanofluid, velocity and heat of sodium nanofluid-water reaction are lower than those of the pure sodium-water reaction. The analytical model for the peak temperature of a sodium nanofluid-water reaction jet has been developed in consideration of these suppression effects by the authors. In this paper, the prediction method for mitigation effects for a damage of adjacent tubes in a steam generator tube rupture (SGTR) accidents is arranged by applying this analytical model for the peak temperature of the reaction jet. On the assumption that the sodium nanofluid is used for the secondary coolant of sodium-cooled fast reactor (SFR), mitigation effects under the design-base accident (DBA) condition and the design-extension condition (DEC) of SGTR are estimated by using this method. As a result, there is a possibility to reduce the number of damaged tubes and to suppress the pressure generated by SGTR accidents by using sodium nanofluid in the secondary coolant.

Journal Articles

Performance and status of the J-PARC accelerators

Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio; Koseki, Tadashi; Yamamoto, Noboru; Yoshii, Masahito

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1038 - 1040, 2018/06

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Hori, Yoichiro*; Yamamoto, Noboru*; Koseki, Tadashi*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2017/12

After the summer shutdown in 2016, the J-PARC restarted user operation late in October for the neutrino experiments (NU) and early in November for the materials and life science experimental facility (MLF). The beam power for the NU was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility (HD), we started beam tuning in April, but suspended by a failure of the electro static septum. After the treatment, we delivered beam at the power of 37 kW. We delivered beam at 150kW for the MLF. In the fiscal year of 2016, the linac, the 3 GeV synchrotron (RCS) and the MLF were stable and the availability was high at 93%. On the contrary, the main ring has several failures and the availabilities were 77% and 84% for NU and HD, respectively.

Journal Articles

Present status of water cooling system at J-PARC LINAC 2017

Suganuma, Kazuaki; Hiroki, Fumio; Ito, Takashi; Yamazaki, Yoshio

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.871 - 873, 2017/12

J-PARC LINAC has a problem that the amount of the flowing water is reduced. It spends such time from alarm to the restoration that it is desirable to take measures. So we have to solve this problem. We tried to focus again on the related water level fluctuation in the storage tank of cooling water equipment and the flow rate fluctuation all of the cooling water that has observed in cooling water equipment named RI4 from RFQ to SDTL of the LINAC. At the same time, we check new information of the operating data. We have hypothesized about the cause of fluctuation of the whole flow rate. That can be deterioration of water quality and lacking of performance of circulation pumps. That can be deterioration of water quality and lacking of performance of circulation pumps.

Journal Articles

Performance and status of the J-PARC accelerators

Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio*; Koseki, Tadashi*; Yamamoto, Noboru*; Hori, Yoichiro*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2290 - 2293, 2017/06

The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). We have taken many hardware upgrades such as front end replacement and energy upgrade at the linac, vacuum improvement, collimator upgrade, etc. The beam powers for the neutrino experiment and hadron experiment from the MR have been steadily increased by tuning and reducing beam losses. The designed 1 MW equivalent beam was demonstrated and user program was performed at 500 kW from the RCS to the neutron and muon experiments. We have experienced many failures and troubles, however, to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented.

Journal Articles

Present status of water cooling system at J-PARC linac

Suganuma, Kazuaki; Hiroki, Fumio; Ito, Takashi; Yamazaki, Yoshio

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.304 - 306, 2016/11

J-PARC LINAC has a problem that the amount of the flowing water is reduced. It spends such time from alarm to the restoration that it is desirable to take measures. So we have to solve this problem. We tried to focus again on the related water level fluctuation in the storage tank of cooling water equipment and the flow rate fluctuation all of the cooling water that has observed in cooling water equipment named RI4 from RFQ to SDTL of the LINAC. At the same time, we check new information of the operating data. We have hypothesized about the cause of fluctuation of the whole flow rate. That can be deterioration of water quality and lacking of performance of circulation pumps. That can be deterioration of water quality and lacking of performance of circulation pumps.

Journal Articles

Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan; Implications for the origin and migration of iodine during basin evolution

Togo, Yoko*; Takahashi, Yoshio*; Amano, Yuki; Matsuzaki, Hiroyuki*; Suzuki, Yohei*; Terada, Yasuko*; Muramatsu, Yasuyuki*; Ito, Kazumasa*; Iwatsuki, Teruki

Geochimica et Cosmochimica Acta, 191, p.165 - 186, 2016/10

 Times Cited Count:13 Percentile:60.45(Geochemistry & Geophysics)

Iodine distribution, speciation, and isotope ratio ($$^{129}$$I/$$^{127}$$I) in both rock and groundwater phases were determined to investigate long-term migration of iodine in diatomaceous and siliceous shale. It was suggested that I$$^{-}$$ is released to the ground water during the progress of the maturation of organic matter. Dissociated I$$^{-}$$ could move toward the surface because of the upward water flow driven by the compaction during burial diagenetic process. Thus, iodine rich brine is created by integration of iodine released from underlying formations. Because of low affinity of I$$^{-}$$ to solid phase, released I$$^{-}$$ remains in solution phase, and the concentration of the iodine in the solution has been possibly increasing during sedimentation history.

Journal Articles

Baseline design of a proton linac for BNCT at OIST

Kondo, Yasuhiro; Hasegawa, Kazuo; Higashi, Yasuo*; Sugawara, Hirotaka*; Yoshioka, Masakazu*; Kumada, Hiroaki*; Matsumoto, Hiroshi*; Naito, Fujio*; Kurokawa, Shinichi*

Proceedings of 7th International Particle Accelerator Conference (IPAC '16) (Internet), p.906 - 909, 2016/06

An accelerator based boron neutron capture therapy (BNCT) facility is being planned at Okinawa institute of science and technology (OIST). The proton accelerator consists of a radio frequency quadrupole (RFQ) linac and a drift tube linac (DTL). The required beam power is 60 kW. The present beam energy and current are 10 MeV and 30 mA, respectively. The pulse length is 3.3 ms and the repetition rate is 60 Hz, therefore, the duty factor is 20%. In this paper, present design of this compact, medium current, high duty proton linac is presented.

157 (Records 1-20 displayed on this page)