Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Rizaal, M.; Nakajima, Kunihisa; Suzuki, Eriko; Miwa, Shuhei
Annals of Nuclear Energy, 218, p.111433_1 - 111433_10, 2025/08
Araki, Shohei; Aizawa, Eiju; Murakami, Takahiko; Arakaki, Yu; Tada, Yuta; Kamikawa, Yutaka; Hasegawa, Kenta; Yoshikawa, Tomoki; Sumiya, Masato; Seki, Masakazu; et al.
Annals of Nuclear Energy, 217, p.111323_1 - 111323_8, 2025/07
Times Cited Count:0JAEA has modified the STACY from a homogeneous system using solution fuel to a heterogeneous system using fuel rods in order to obtain criticality characteristics of fuel debris. The modification of the STACY was completed in December 2023. A series of performance inspections were conducted for the start of experimental operations. A new thermal power calibration is required for the performance inspections in order to operate at less than 200 W, which is the permitted thermal power. However, the thermal power measurement method and calibration data used in the former STACY is no longer available due to the modification of the modified STACY. We measured the thermal power of the STACY using the activation method that was improved to adapt to the measurement condition and calibrated the power meter system. Since the positions where activation foils could be installed were very limited, the thermal power was evaluated using numerical calculations supplemented by experimental data. Neutron flux data at the positions of the activation foil was measured by the activation method. Neutron distribution in the core was calculated by the Monte Carlo code MVP. A response function of the activation foil was calculated using the PHITS. The uncertainty of the thermal power measurement was conservatively estimated to be about 15%. Four operations were conducted for the thermal power measurement. The power meter was calibrated by using three operational data and tested with the one operational data. It was found that the indicated value of the meter adjusted by the STACY before the modification work would tend to overestimate the actual output by about 40%. In addition, the current calibration was able to calibrate the meter to within 3% accuracy.
Soma, Yasutaka; Komatsu, Atsushi; Kaji, Yoshiyuki; Yamamoto, Masahiro*; Igarashi, Takahiro
Corrosion Science, 251, p.112897_1 - 112897_15, 2025/07
Experimental and modeling studies of the oxygen ingression at the crevices of stainless steels were conducted in high-temperature water (288C). The limiting distance of oxygen ingression,
, was defined as the point beyond which the primary surface oxide changed (hematite
magnetite), regardless of crevice gap, oxygen concentration, and time. In situ measurements revealed increased electrical conductivity around the
position indicating ion enrichment due to a differential oxygen concentration cell.
increased with increasing crevice gap, oxygen concentration, and immersion time. Modeling study suggested that oxide layer growth reduced anodic dissolution and slowed oxygen consumption, allowing oxygen ingression with time.
Gu, G. H.*; Jeong, S. G.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Cho, J.*; Kim, H. S.*; 4 of others*
Journal of Materials Science & Technology, 223, p.308 - 324, 2025/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Lin, Z. M.*; Liu, B. X.*; Ming, K. S.*; Xu, P. G.; Yin, F. X.*; Zheng, S. J.*
Scripta Materialia, 263, p.116692_1 - 116692_7, 2025/07
Shi, W.*; Machida, Masahiko; Yamada, Susumu; Okamoto, Koji
Progress in Nuclear Energy, 184, p.105710_1 - 105710_10, 2025/06
Very recently, Least Absolute Shrinkage and Selection Operator (LASSO) has been proposed as a scheme capable to inversely estimate radioactive source distributions inside reactor building rooms from air dose rate measurements together with the predicted lower bound of the measurement numbers for successful reconstructions. However, no one has ever analyzed how the uncertainty of input data including the measurement errors influences the accuracy of the inverse estimation results. In this paper, we therefore perform uncertainty analysis of the LASSO scheme and suggest an uncertainty estimation function derived based on the theory of Candes. We actually demonstrate in two types of numerical tests with different input uncertainties obtained by using Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS) that the calculated errors obey the proposed uncertainty estimation function. Thus, the LASSO scheme allows to successfully estimate radioactive distributions within the predicted uncertainty.
Li, X.; Yamaji, Akifumi*; Sato, Ikken*; Yamashita, Takuya
Annals of Nuclear Energy, 214, p.111217_1 - 111217_13, 2025/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Wang, Y.*; Gong, W.; Harjo, S.; 7 of others*
Acta Materialia, 288, p.120840_1 - 120840_14, 2025/04
Times Cited Count:0Ito, Tatsuya; Ogawa, Yuhei*; Gong, W.; Mao, W.*; Kawasaki, Takuro; Okada, Kazuho*; Shibata, Akinobu*; Harjo, S.
Acta Materialia, 287, p.120767_1 - 120767_16, 2025/04
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Pandian, K.*; Neikter, M.*; Ekh, M.*; Harjo, S.; Kawasaki, Takuro; Woracek, R.*; Hansson, T.*; Pederson, R.*
JOM, 77(4), p.1803 - 1815, 2025/04
Tamatsukuri, Hiromu; Uchihara, Takeru*; Mitsuda, Setsuo*; Ishii, Yuta*; Nakao, Hironori*; Takehana, Kanji*; Imanaka, Yasutaka*
Physical Review B, 111(13), p.134403_1 - 134403_9, 2025/04
Chudo, Hiroyuki; Yokoi, Naoto*; Matsuo, Mamoru; Harii, Kazuya*; Suzuki, Jun*; Imai, Masaki; Sato, Masahiro*; Maekawa, Sadamichi*; Saito, Eiji*
Physical Review Letters, 134(13), p.130603_1 - 130603_5, 2025/04
Sweet, M.*; Mishima, Kenji*; Harada, Masahide; Kurita, Keisuke; Iikura, Hiroshi; Tasaki, Seiji*; Kikuchi, Norio*
Quantum Beam Science (Internet), 9(2), p.11_1 - 11_17, 2025/04
Neutron beam, being electrically neutral and highly penetrating, offers unique advantages for irradiation of biological species such as plants, seeds, and microorganisms. We comprehensively investigated the potential of neutron irradiation for inducing genetic mutations using simulations of J-PARC BL10, JRR-3 TNRF, and KUANS for spallation, reactor, and compact neutron sources.
Koarashi, Jun; Takeuchi, Erina; Kokubu, Yoko; Atarashi-Andoh, Mariko
Radiocarbon, 67(2), p.307 - 317, 2025/04
Times Cited Count:0 Percentile:0.00(Geochemistry & Geophysics)Radiocarbon (C) dating of soil samples by accelerator mass spectrometry has been proven useful for studying carbon (C) cycling in terrestrial ecosystems. There are, however, two main difficulties in sample preparation for this application: contamination of samples with modern C and inhibition of graphite formation due to sulfur (S)-containing impurities. Here we evaluated these effects from three different sample preparation methods, by conducting
C measurements of
C-dead sample and S-rich soil samples. The preparation methods were all successful in graphite formation and
C measurement for soil samples with an organic S content
6.9%. The different methods showed different percent Modern Carbon (pMC) values ranging from 0.19% to 0.64% for
C-dead sample. However, the three methods had little influence on the determination of
C age for samples at least younger than 12,000 yr BP. The methods examined in the present study can be used for
C dating with sufficient accuracy in the application to C cycle studies.
Sakurai, Junya*; Torigata, Keisuke*; Matsunaga, Manabu*; Takanashi, Naoto*; Hibino, Shinya*; Kizu, Kenichi*; Morita, Akira*; Inomoto, Masahiro*; Shimohata, Nobuaki*; Toyota, Kodai; et al.
Tetsu To Hagane, 111(5), p.246 - 262, 2025/04
Namie, Masanari; Saito, Junichi; Oka, Ryotaro*; Kim, J.-H.*
Vacuum, 234, p.114038_1 - 114038_9, 2025/04
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Meigo, Shinichiro; Iwamoto, Hiroki; Sugihara, Kenta*; Hirano, Yukinori*; Tsutsumi, Kazuyoshi*; Saito, Shigeru; Maekawa, Fujio
JAEA-Technology 2024-026, 123 Pages, 2025/03
Based on the design of the ADS Target Test Facility (TEF-T) at the J-PARC Transmutation Experimental Facility, a conceptual study was conducted on the J-PARC proton beam irradiation facility. This research was carried out based on the recommendations of the Nuclear Transmutation Technology Evaluation Task Force of the MEXT. The recommendations state that it is desirable to consider facility specifications that can make the most of the benefits of using the existing J-PARC proton accelerator while also solving the engineering issues of the ADS. We considered facilities that could respond to a variety of needs while reducing the facilities that were not needed in the TEF-T design. In order to clarify these diverse needs, we investigated the usage status of representative accelerator facilities around the world. As a result, it became clear that the main purposes of these facilities were (1) Material irradiation, (2) Soft error testing of semiconductor devices using spallation neutrons, (3) Production of RI for medical use, and (4) Proton beam use, and we investigated the facilities necessary for these purposes. In considering the facility concept, we assumed a user community in 2022 and reflected user opinions in the facility design. This report summarizes the results of the conceptual study of the proton irradiation facility, various needs and responses to them, the roadmap for facility construction, and future issues.
Emori, Tatsuya; Kitatsuji, Yoshihiro; Ban, Yasutoshi
JAEA-Technology 2024-025, 20 Pages, 2025/03
Radioisotope Thermoelectric Generators (RTGs) using the decay heat of Pu-238 has been applied for outer planet missions far from Jupiter, where solar power is limited. However, no facilities are available to produce Pu-238 for space probes in Japan. Moreover, the use of nuclear materials for the space exploration is difficult in term of the regulation. Thus, we focused on Am-241 whose half-life is around 432 years as an alternative heat source for RTGs. This report describes the procedure of separating Am-241 decayed from Pu-241 in aged plutonium oxide. Two experiments were performed: one using solid-liquid extraction and the other combining liquid-liquid extraction and solid-liquid extraction. Packed columns were used in the experiments, with their number reduced by less than one-fifth in the latter experiment compared to the former. Furthermore, the time required for separation in the latter experiment was less than half that of the former. We performed the separation experiments six times, collecting a total of approximately 0.43 g of Am-241 as an oxalate salt.
Tomioka, Dai; Kochiyama, Mami; Ozone, Kenji; Nakata, Hisakazu; Sakai, Akihiro
JAEA-Technology 2024-023, 38 Pages, 2025/03
Japan Atomic Energy Agency is an implementing organization of near-surface disposal for low-level radioactive wastes generated from research, industrial and medical facilities in Japan. Information on the radioactivity concentration of these radioactive wastes is dispensable for the design and conformity assessment of the waste disposal facilities for the licensing application of the disposal project and its safety review. Radioactive Wastes Disposal Center has been improving the radioactivity evaluation procedure for the dismantling waste generated from the research reactors based on the activation calculation. In order to investigate the applicability of the ORIGEN code (included in SCALE6.2.4), which enables more accurate activation calculations using multigroup neutron spectra, we performed activation calculations with the ORIGEN-code and the ORIGEN-S code (included in SCALE6.0), which has been widely used in the past, for the dismantled wastes from the Rikkyo University Research Reactor, where radioactivity analysis data for the structural materials around the reactor core were compiled. As a result, the calculation time difference between ORIGEN and ORIGEN-S was small and the evaluated radioactivity concentrations of the former were in the range of 0.8-1.0 times those of the latter, which was in good agreement with those of radiochemical analysis in the range of 0.5-3.0 times. The applicability of ORIGEN was confirmed. In addition, activation calculations assuming trace elements in structural materials of nuclear reactor were performed with ORIGEN and ORIGEN-S and the results were compared. The causes of the large differences among 170 nuclides that are important for dose assessment in near-surface disposal were assessed each nuclide.
Hatakeyama, Yuichi; Hirai, Koki; Ikegami, Yuta*; Sano, Naruto; Tomita, Takeshi; Usami, Koji; Tagami, Susumu
JAEA-Technology 2024-020, 33 Pages, 2025/03
The Waste Safety Testing Facility (WASTEF) is a facility that began operation in December 1982 with the aim of conducting safety testing research on the long-term storage and subsequent geological disposal of high-level radioactive waste generated by the reprocessing of spent fuel. This facility is composed of five concrete cells, one lead cell, six glove boxes, and seven hoods, and is a large-scale facility capable of using nuclear fuel materials including uranium and plutonium, as well as radioisotopes such as neptunium and americium. The facility is equipped with an automatic fire alarm system for the entire building in accordance with the Fire Service Act and regulations on technical standards for facilities used. This is an important aspect of safety management, and it is required that the equipment be sufficiently sound and reliable. However, after more than 30 years of use since its installation, the fire receiving panel, one of the components of the automatic fire alarm system, has deteriorated significantly. Furthermore, many of the parts used have been discontinued and are no longer available, making it difficult to procure them, making it difficult to maintain the equipment's performance. Therefore, in order to ensure the safe and stable operation of WASTEF, the fire receiving panel was updated. This report summarizes the update of the fire receiving panel among the automatic fire alarm equipment that was implemented in FY2022.