Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.601 - 604, 2023/01
no abstracts in English
Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01
The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.
Kamiya, Junichiro; Takano, Kazuhiro*; Wada, Kaoru; Yanagibashi, Toru*
e-Journal of Surface Science and Nanotechnology (Internet), 21, 10 Pages, 2023/00
no abstracts in English
Fukuda, Tatsuo; Kobata, Masaaki; Shobu, Takahisa; Yoshii, Kenji; Kamiya, Junichiro; Iwamoto, Yosuke; Makino, Takahiro*; Yamazaki, Yuichi*; Oshima, Takeshi*; Shirai, Yasuhiro*; et al.
Journal of Applied Physics, 132(24), p.245102_1 - 245102_8, 2022/12
Times Cited Count:0 Percentile:0(Physics, Applied)Direct energy conversion has been investigated using Ni/SiC Schottky junctions with the irradiation of monochromatized synchrotron X-rays simulating the gamma rays of Np (30 keV) and
Am (60 keV). From current-voltage measurements, electrical energies were obtained for both kinds of gamma rays. The energy conversion efficiencies were found to reach up to
1.6%, which is comparable to those of a few other semiconducting systems reported thus far. This result shows a possibility of energy recovery from nuclear wastes using the present system, judging from the radiation tolerant nature of SiC. Also, we found different conversion efficiencies between the two samples. This could be understandable from hard X-ray photoelectron spectroscopy and secondary ion mass spectroscopy measurements, suggesting the formation of Ni-Si compounds at the interface in the sample with a poor performance. Hence, such combined measurements are useful to provide information that cannot be obtained by electrical measurements alone.
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:1 Percentile:62.84(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Kamiya, Junichiro; Takano, Kazuhiro*; Yuza, Hiromu*; Wada, Kaoru
e-Journal of Surface Science and Nanotechnology (Internet), 20(2), p.107 - 118, 2022/05
no abstracts in English
Yamada, Ippei; Wada, Motoi*; Kamiya, Junichiro; Kinsho, Michikazu
Journal of Physics; Conference Series, 2244, p.012077_1 - 012077_6, 2022/04
Times Cited Count:0 Percentile:0.33no abstracts in English
Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami
JAEA-Technology 2021-019, 105 Pages, 2021/11
Since a user operation startup, the 3 GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS, such as the magnet, vacuum chambers, beam monitors, etc., increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have organized a task force for the installation of the shield. The task force has aimed to optimize the structure of the radiation shield, construct the installation procedure with due consideration of the worker's dose suppression. As the examination result of the shield design, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The renewal work required to install the shielding has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area. It was a large-scale work to occupy the beam injection area during almost of the summer maintenance period. However, it is considered very meaningful for dose suppression in future maintenance works.
Takano, Kazuhiro; Kotoku, Hirofumi*; Kobayashi, Fuminori*; Miyao, Tomoaki*; Moriya, Katsuhiro; Kamiya, Junichiro
JAEA-Technology 2021-017, 35 Pages, 2021/11
In J-PARC LINAC, the vacuum system of L3BT, which is a beam transport line connecting LINAC and 3GeV synchrotron, uses a turbo molecular pump and roots pump for rough exhaust and an ion pump for main exhaust. In addition, beam dumps are connected to the end of the L3BT at 0 degree, 30 degree, 90 degree, and 100 degree positions via vacuum partition windows. The roots pumps are used as the exhaust system for each beam dump. The roots pump controllers have been installed away from the pump in the accelerator tunnel to avoid radiation damages. Besides, the special controllers, which have no inverter circuit inside, have been used to reduce the electrical noise on the beam loss monitors nearby. However, using the special controller without inverters, several problems have occurred such as the instability or wide variability of the pumping speed. To solve such problems, the roots pump controller with the inverter circuit must be used after reducing the electrical noise. In this report, some countermeasures to reduce the electrical noise from the inverters were investigated. The noise reduction circuit was successfully optimized to the level where the beam loss monitors works unaffected.
Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.334 - 337, 2021/10
no abstracts in English
Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.238 - 242, 2021/10
Since a user operation startup, the 3GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The installation work of the shield has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area.
Kamiya, Junichiro; Kotoku, Hirofumi*; Kurosawa, Shunta*; Takano, Kazuhiro; Yanagibashi, Toru*; Yamamoto, Kazami; Wada, Kaoru
Physical Review Accelerators and Beams (Internet), 24(8), p.083201_1 - 083201_23, 2021/08
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)Through the operation of the vacuum system in J-PARC, it becomes evident that the high-power beam has more powerful effects on the vacuum system than expected. Those effects are the malfunction of vacuum equipment and the large pressure rise. The former is the failure of the turbomolecular pump (TMP) controller. The TMP itself is also damaged by a bearing crush due to a touch-down. We have developed a TMP controller that can connect with long cables of more than 200 m lengths to install the controller in a control room where there is no radiation influence. The TMP with high-strength bearing has been also developed. The latter is an extreme pressure rise with increasing the beam power. It is indicated that the pressure rise mechanism is a result of ion-stimulated gas desorption. It is finally confirmed that the dynamic pressure during the high-power beam is effectually suppressed by additionally installing the NEG pumps.
Kamiya, Junichiro; Takano, Kazuhiro; Yuza, Hiromu*; Wada, Kaoru
Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3471 - 3474, 2021/08
The NEG coating, which has been developed in CERN, is a revolutionary technique that can make a beam pipe act as a vacuum pump by coating the getter materials with the ability to adsorb/absorb gas molecules on the beam pipe surface. The NEG materials are alloys of titanium, zirconium, and vanadium. Titanium is one of the getter materials. In high-power beam accelerators, titanium has been used as the beam pipe chamber material due to its low radioactivation characteristics. The ordinal titanium surface has no getter function because it is covered with titanium-oxide film. The new technique, which removes the titanium-oxide surface by the sputtering and makes the titanium vacuum chamber itself the vacuum pump like NEG coated chamber, has been developed. After sputtering the inner surface of the titanium chamber, we obtained clear evidence that shows the chamber acts as a vacuum pump. We have also tried to make a titanium chamber with a getter function only by baking. Dependence of the getter characteristics on the baking temperature will also be reported.
Shobuda, Yoshihiro; Kamiya, Junichiro; Takayanagi, Tomohiro; Horino, Koki*; Ueno, Tomoaki*; Yanagibashi, Toru*; Kotoku, Hirofumi*
Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3205 - 3208, 2021/08
At the injection area of the RCS in J-PARC, the interaction between the copper stripes (RF-shields) on the ceramic chambers and the external magnetic fields modulatesthe magnetic fields in the chamber, causing beam losses for a special tune. A ceramic chamber spirally covered by the stripes is a candidate to mitigate the modulations. In this report, we numerically and experimentally investigate how the interaction is suppressed, while sustaining the beam impedance enhancement within tolerable at the RCS.
Yamada, Ippei; Wada, Motoi*; Moriya, Katsuhiro; Kamiya, Junichiro; Saha, P. K.; Kinsho, Michikazu
Physical Review Accelerators and Beams (Internet), 24(4), p.042801_1 - 042801_13, 2021/04
Times Cited Count:2 Percentile:48.86(Physics, Nuclear)A transverse beam profile monitor that visualizes a two-dimensional beam-induced fluorescent image was developed. The monitor employs a sheet-shaped gas flow formed by a technique of rarefied gas dynamics. A simplified analysis method was developed to reconstruct the beam intensity profile from the obtained image. The developed profile monitor and the analysis method were applied to measure the J-PARC 3 MeV H beam profile. The root mean square values of the profiles were consistent with the ones obtained by a wire-scanning-type beam profile monitor. The beam loss due to the gas sheet injection was measured as a beam-current reduction. The amount of the beam current decreased in proportion to the gas sheet flux and the reduction ranged from 0.004 to 2.5%. The assembled system was capable of reconstructing a beam profile from a single shot beam pulse (1.7
10
protons in 50
s).
Kamiya, Junichiro; Kotoku, Hirofumi; Hikichi, Yusuke*; Takahashi, Hiroki; Yamamoto, Kazami; Kinsho, Michikazu; Wada, Kaoru*
JPS Conference Proceedings (Internet), 33, p.011023_1 - 011023_6, 2021/03
The vacuum system is the key for the stable high power beam operation in J-PARC 3 GeV rapid cycling synchrotron (RCS), because the gas molecules in the beam line make the beam loss due to the scattering. The more than 10 years operation of the RCS vacuum system showed that the ultra-high vacuum (UHV) has been stably maintained by the several developments. The challenges for lower beam line pressure will exist in a future operation with higher beam power. For such challenge, a TMP with a rotor of titanium alloy, which have much higher mechanical strength than aluminum allow for the normal rotter, has been developed. Overcoming the difficulties of the machining performance of the titanium alloy rotor was successfully manufactured. We will report the summary of the 10 years operation of the RCS vacuum system and the incoming developments towards the XHV.
Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Yoshimoto, Masahiro; et al.
Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.209 - 213, 2020/09
The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, just before the summer shutdown period, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. First trial was 1-hour continuous operation in July 2018, and second trial was 10-hours continuous in July 2019. In both cases, we achieved almost stable operation. Furthermore, in June 2020, we tried to operate continuously for over 40 hours. But in this case, some trouble occurred and the operation was frequently suspended. Through these continuous operation trials, we have identified issues for stable operation of 1 MW. In this presentation, we will report the results of 1-MW continuous operation and issues obtained from these results.
Kamiya, Junichiro; Okabe, Kota; Kinsho, Michikazu; Moriya, Katsuhiro; Yamada, Ippei; Ogiwara, Norio*; Hikichi, Yusuke*; Wada, K.*
Journal of Physics; Conference Series, 1350, p.012149_1 - 012149_6, 2019/12
Times Cited Count:2 Percentile:75.87To obtain a getter effect to titanium vacuum duct surface, the method to remove the oxide on the surface by sputtering with ionized molecules has been developed. In the method, a sheet-shaped gas distribution with a uniform and high density is generated through a narrow slit by a small amount of gas. In this report, the gas density distribution was calculated by the Monte Carlo simulation code. As a result, it was found that a gas injection from both directions was effective to generate uniform density distribution. Furthermore, the gas injection method was applied to a non-destructive beam profile monitor, that detects ions generated by the interaction between gas molecules and beam. In this monitor, dependence of the beam profile on the injected gas amount was measured. A small amount of injected gas was found to be ideal for the beam profile measurements in the unsaturated and a high S/N ratio region.
Kamiya, Junichiro; Kotoku, Hirofumi; Shobuda, Yoshihiro; Takayanagi, Tomohiro; Yamamoto, Kazami; Yanagibashi, Toru*; Horino, Koki*; Miki, Nobuharu*
Journal of Physics; Conference Series, 1350, p.012172_1 - 012172_7, 2019/12
Times Cited Count:0 Percentile:0.07One of the issues in the J-PARC 3 GeV rapid cycling synchrotron is the high residual radiation dose around the beam injection point. A radiation shield is necessary to reduce radiation exposure of workers when maintenance is performed there. A space to install the radiation shield should be secured by newly designing a structure of the vacuum chamber at the injection point and the alumina ceramics beam pipes for the shift bump magnets. To make the space for the shield, the chamber is lengthened along the beam line and the cross-sectional shape is changed from circle to rectangle. The displacement and inner stress of the vacuum chamber due to atmospheric pressure were evaluated to be enough small by the calculation. For the ceramics beam pipe's rf-shield, the damping resistor was effective to reduce the induced modulation voltages by the pulsed magnetic field.
Shobuda, Yoshihiro; Okabe, Kota; Kamiya, Junichiro; Moriya, Katsuhiro
Journal of Physics; Conference Series, 1350, p.012113_1 - 012113_7, 2019/12
Times Cited Count:0 Percentile:0.07All holes on the chamber walls of synchrotrons should be filled with the radiofrequency (RF)-shields to suppress coupling impedances that excite beam instabilities. In a synchrotron, titanium nitride (TiN)-coated RF-shields are installed with collimators. If the holes, through which the collimator jaw enters and exits the chamber, are filled with such RF-shields, the shields may break down as the dynamic coefficient of TiN increases in vacuum. At the Rapid Cycling Synchrotron (RCS), the RF-shields are eliminated from the collimator after demonstrating that the effect due to the RF-shields is negligible on the impedance at low frequencies.