Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 263

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on heat transfer behavior of a cylindrical particle bed with volumetric heating

Wen, J.*; Kamada, Yuto*; Yokoyama, Kosei*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Imaizumi, Yuya; Tagami, Hirotaka; Matsuba, Kenichi; Kamiyama, Kenji

Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 8 Pages, 2024/11

Journal Articles

Study on heat transfer behavior of a rectangular particle bed with volumetric heating

Wen, J.*; Kamada, Yuto*; Yokoyama, Kosei*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Imaizumi, Yuya; Tagami, Hirotaka; Matsuba, Kenichi; Kamiyama, Kenji

Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 8 Pages, 2024/11

Journal Articles

Experimental study on the coolability of molten core materials discharged into a depth- and volume-limited sodium plenum

Matsuba, Kenichi; Kato, Shinya; Kamiyama, Kenji; Akaev, A. S.*; Vurim, A. D.*; Baklanov, V. V.*

Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 7 Pages, 2024/11

During a severe accident in sodium-cooled fast reactors, molten core materials could be discharged from the core region toward the lower sodium region of the reactor vessel through coolant channels, such as control rod guide tubes. Typical SFRs have a sodium plenum with limited depth and volume, such as the core inlet plenum located under the core region. Therefore, it is important to evaluate the coolability of molten core materials discharged into a depth- and volume-limited sodium plenum. In the present study, to deepen the understanding on the coolability of molten core materials discharged into such a sodium plenum, conditions under which molten core materials form solidified fragments were discussed based on an experiment discharging a molten fuel simulant (molten Al2O3) into a test vessel filled with liquid sodium.

JAEA Reports

Heat transfer coefficients model for SIMMER-III and SIMMER-IV

Brear, D. J.*; Kondo, Satoru; Sogabe, Joji; Tobita, Yoshiharu*; Kamiyama, Kenji

JAEA-Research 2024-009, 134 Pages, 2024/10

JAEA-Research-2024-009.pdf:2.45MB

The SIMMER-III/SIMMER-IV computer codes are being used for liquid-metal fast reactor (LMFR) core disruptive accident (CDA) analysis. The sequence of events predicted in a CDA is often influenced by the heat exchanges between LMFR materials, which are controlled by heat transfer coefficients (HTCs) in the respective materials. The mass transfer processes of melting and freezing, and vaporization and condensation are also controlled by HTCs. The complexities in determining HTCs in a multi-component and multi-phase system are the number of HTCs to be defined at binary contact areas of a fluid with other fluids and structure surfaces, and the modes of heat transfer taking into account different flow topologies representing flow regimes with and without structure. As a result, dozens of HTCs are evaluated in each mesh cell for the heat and mass transfer calculations. This report describes the role of HTCs in SIMMER-III/SIMMER-IV, the heat transfer correlations implemented and the calculation of HTCs in all topologies in multi-component, multi-phase flows. A complete description of the physical basis of HTCs and available experimental correlations is contained in Appendices to this report. The major achievement of the code assessment program conducted in parallel with code development is summarized with respect to HTC modeling to demonstrate that the coding is reliable and that the model is applicable to various multi-phase problems with and without reactor materials.

JAEA Reports

SIMMER-III and SIMMER-IV; Computer codes for LMFR core disruptive accident analysis

Kondo, Satoru; Tobita, Yoshiharu*; Morita, Koji*; Kamiyama, Kenji; Yamano, Hidemasa; Suzuki, Toru*; Tagami, Hirotaka; Sogabe, Joji; Ishida, Shinya

JAEA-Research 2024-008, 235 Pages, 2024/10

JAEA-Research-2024-008.pdf:4.77MB

The SIMMER-III and SIMMER-IV computer codes, developed at the Japan Atomic Energy Agency are the codes with two- and three-dimensional, multi-field, multi-component fluid-dynamics models, coupled with a space- and time-dependent neutron kinetics model. The codes have been used widely for simulating complex phenomena during core-disruptive accidents in liquid-metal fast reactors. Advanced features of the codes in comparison with the former codes include: stable and robust fluid-dynamics algorithm with up to 8 velocity fields, improved representation of structures and multi-phase flow topology, comprehensive treatment of complex heat and mass transfer processes, accurate analytic equations of state, a stable and efficient neutron flux shape solution method and decay heat model. This report describes the models and methods of SIMMER-III and SIMMER-IV. For those individual models, the details of which have been reported elsewhere, only the outlines of the models are presented. The reports of code verification and validation have been already published.

Journal Articles

New analysis model of solid body formation in particle method for jet impingement and solidification in severe accidents of SFRs

Imaizumi, Yuya; Kamiyama, Kenji; Matsuba, Kenichi

Annals of Nuclear Energy, 206, p.110658_1 - 110658_10, 2024/10

 Times Cited Count:1 Percentile:62.55(Nuclear Science & Technology)

Journal Articles

France-Japan collaboration on severe accident studies in sodium-cooled fast reactors, 1; Severe accident scenarios assessment

Onoda, Yuichi; Ishida, Shinya; Fukano, Yoshitaka; Kamiyama, Kenji; Yamano, Hidemasa; Kubo, Shigenobu; Shibata, Akihiro*; Bertrand, F.*; Seiler, N.*

Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10

Journal Articles

France-Japan collaboration on severe accident studies in sodium-cooled fast reactors, 2; Methodologies and calculations of severe accident phases

Sogabe, Joji; Ishida, Shinya; Tagami, Hirotaka; Okano, Yasushi; Kamiyama, Kenji; Onoda, Yuichi; Matsuba, Kenichi; Yamano, Hidemasa; Kubo, Shigenobu; Kubota, Ryuzaburo*; et al.

Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10

In the frame of France-Japan collaboration, the calculational methodologies were defined and assessed, and the phenomenology and the severe accident consequences were investigated in a pool-type sodium-cooled fast reactor.

Journal Articles

Thinning behavior of solid boron carbide immersed in molten stainless steel for core disruptive accident of sodium-cooled fast reactor

Emura, Yuki; Takai, Toshihide; Kikuchi, Shin; Kamiyama, Kenji; Yamano, Hidemasa; Yokoyama, Hiroki*; Sakamoto, Kan*

Journal of Nuclear Science and Technology, 61(7), p.911 - 920, 2024/07

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

A Mechanism for spontaneous thermal fragmentation with coolant entrainment during the molten fuel-sodium interaction

Johnson, M.*; Emura, Yuki; Clavier, R.*; Matsuba, Kenichi; Kamiyama, Kenji; Brayer, C.*; Journeau, C.*

Nuclear Engineering and Design, 423, p.113165_1 - 113165_14, 2024/07

 Times Cited Count:2 Percentile:62.55(Nuclear Science & Technology)

Experimental investigation of two interactions between molten jets and sodium, pertaining to severe accidents in a sodium-cooled fast reactor, have been undertaken at the JAEA's MELT facility. X-ray imaging and debris analysis reveal rapid formation of a crust at the melt coolant-interface, instigating thermal fragmentation events. Heat transfer calculations at the jet-coolant interface, supported by particle tracking velocimetry characterisation of the jet velocity, imply the formation of a solid crust within milliseconds of contact with the coolant. A mechanism for enhanced thermal fragmentation is proposed, inspired by observations from the X-ray imaging of coolant entrainment into the jet.

Journal Articles

Experiment and new analysis model simulating in-place cooling of a degraded core in severe accidents of sodium-cooled fast reactors

Imaizumi, Yuya; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Matsuba, Kenichi; Akaev, A.*; Mikisha, A.*; Baklanov, V.*; Vurim, A.*

Annals of Nuclear Energy, 194, p.110107_1 - 110107_11, 2023/12

 Times Cited Count:2 Percentile:49.11(Nuclear Science & Technology)

Journal Articles

A Large-scale particle-based simulation of heat and mass transfer behavior in EAGLE ID1 in-pile test

Zhang, T.*; Yao, Y.*; Morita, Koji*; Liu, X.*; Liu, W.*; Imaizumi, Yuya; Kamiyama, Kenji

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

Journal Articles

A Series of molten stainless steel-sodium interaction experiments to develop an evaluation methodology for jet breakup during core disruptive accidents in sodium-cooled fast reactors

Matsuba, Kenichi; Emura, Yuki; Kamiyama, Kenji

Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 8 Pages, 2023/04

A series of Fuel-Coolant Interaction (FCI) experiments discharging about 1 kg of molten stainless steel (SS), one of prototypic materials, into a sodium pool (about 30 cm in diameter, about 1 m in depth) has been conducted at the MELT facility of Japan Atomic Energy Agency. X-ray visualization program confirmed that molten SS jets with diameters of about 1 to 2 cm were broken up by FCIs which occurred with sodium vapor expansion at depths near the initial sodium level. Responses of thermocouples suggested that the jets were rapidly cooled near the initial sodium level and became SS fragments before reaching the bottom of the sodium pool. Results of experiments with molten SS jets confirmed that an evaluation methodology for jet breakup under sodium-cooled conditions needs to be developed by taking into account effects of thermal parameters related to sodium vaporization as well as conventional parameters, such as density ratio of a jet and coolant, and jet diameter.

Journal Articles

Measurement of void fraction distribution in a sphere-packed bed using X-ray imaging

Yamamoto, Seishiro*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Imaizumi, Yuya; Matsuba, Kenichi; Kamiyama, Kenji

Konsoryu, 37(1), p.79 - 85, 2023/03

Journal Articles

A 3D particle-based simulation of heat and mass transfer behavior in the EAGLE ID1 in-pile test

Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Annals of Nuclear Energy, 179, p.109389_1 - 109389_10, 2022/12

 Times Cited Count:3 Percentile:44.16(Nuclear Science & Technology)

Journal Articles

Particle-based simulation of jet impingement behaviors

Takatsuka, Daichi*; Morita, Koji*; Liu, W.*; Zhang, T.*; Nakamura, Takeshi*; Kamiyama, Kenji

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 10 Pages, 2022/10

Journal Articles

Measurements of pressure drop and void fraction of air-water two-phase flow in a sphere-packed bed

Yamamoto, Seishiro*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Imaizumi, Yuya; Matsuba, Kenichi; Kamiyama, Kenji

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 4 Pages, 2022/10

Journal Articles

Study on the discharge behavior of the molten-core materials through the control rod guide tube; Investigations of the effect of an internal structure in the control rod guide tube on the discharge behavior

Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji; Akaev, A.*; Vurim, A.*; Baklanov, V.*

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 12 Pages, 2022/09

The In-Vessel Retention (IVR) of molten-core in Core Disruptive Accidents (CDAs) is of prime importance in enhancing the safety of sodium-cooled fast reactors. One of the main subjects in ensuring IVR is to design the Control Rod Guide Tube (CRGT) which allows effective discharge of molten core materials from the core region. The effectiveness of the CRGT design is assessed through CDA analyses, and it is reasonable for these analyses to develop a computer code collaborated with experimental researches. Thus, experiments addressing the discharge behavior of the molten-core materials through the CRGT have proceeded as one of the subjects in the collaboration research named the EAGLE-3 project, and the obtained experimental results are reflected in the development of the SIMMER code. In this project, a series of out-of-pile tests using molten-alumina as the fuel simulant was conducted to understand the discharge behavior of molten-core materials through the CRGT. In this study, in order to investigate the effect of an internal structure in the CRGT on the discharge behavior of the molten-core materials, the data of an out-of-pile test in which the molten-alumina penetrated to a duct with the internal structure were analyzed. In addition, the post-test analysis using the SIMMER code was conducted and the results were compared with the test results.

Journal Articles

Analysis on cooling behavior for simulated molten core material impinging to a horizontal plate in a sodium pool

Matsushita, Hatsuki*; Kobayashi, Ren*; Sakai, Takaaki*; Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 9 Pages, 2022/09

During core disruptive accidents in sodium-cooled fast reactors, the molten core material flows through flow channels, such as the control rod guide tubes, into the core inlet plenum under the core region. The molten core material can be cooled and solidified while impinging on a horizontal plate of the inlet plenum in a sodium coolant. However, the solidification and cooling behaviors of molten core materials impinged on a horizontal structure have not been sufficiently studied thus far. Notably, this is an important phenomenon that needs to be elucidated from the perspective of improving the safety of sodium-cooled fast reactors. Accordingly, a series of experiments on discharging a simulated molten core material (alumina: Al$$_{2}$$O$$_{3}$$) into a sodium coolant on a horizontal structure was conducted at the experimental facility of the National Nuclear Center of the Republic of Kazakhstan. In this study, analyses on the sodium experiments using SIMMER-III as the fast reactor safety evaluation code were performed. The analysis methods were validated by comparing the results and experiment data. In addition, the cooling and solidification behaviors during jet impingement were evaluated. The results indicated that the molten core material exhibited fragmentation owing to the impingement on the horizontal plate and was, therefore, scattered toward the periphery. Furthermore, the simulated molten core material was evaluated to be cooled by sodium and subsequently solidified.

Journal Articles

Experimental study on reaction behavior between control rod material and molten stainless steel for core disruptive accidents of sodium-cooled fast reactors

Emura, Yuki; Kamiyama, Kenji; Yamano, Hidemasa

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2022/07

no abstracts in English

263 (Records 1-20 displayed on this page)