Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 64

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Pulsed muon facility of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.

Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12

Journal Articles

Present status of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.

Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03

 Times Cited Count:0 Percentile:0.21(Physics, Applied)

Journal Articles

Reactor physics experiment in a graphite moderation system for HTGR, 3

Fukaya, Yuji; Okita, Shoichiro; Kanda, Shun*; Goto, Masaki*; Nakajima, Kunihiro*; Sakon, Atsushi*; Sano, Tadafumi*; Hashimoto, Kengo*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*

KURNS Progress Report 2021, P. 101, 2022/07

The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs) in 2018. The objectives are to intro-duce the generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to improve neutron instrumentation system by virtue of the particular characteristics due to a graphite moderation system. For this end, we composed B7/4"G2/8"p8EU(3)+3/8"p38EU in the B-rack of Kyoto University Critical Assembly (KUCA) in 2021.

Journal Articles

Reactor noise power-spectral analysis for a graphite-moderated and -reflected core, 3

Sakon, Atsushi*; Hashimoto, Kengo*; Sano, Tadafumi*; Nakajima, Kunihiro*; Kanda, Shun*; Goto, Masaki*; Fukaya, Yuji; Okita, Shoichiro; Fujimoto, Nozomu*; Takahashi, Yoshiyuki*

KURNS Progress Report 2021, P. 100, 2022/07

The R&D of reactor noise analysis to obtain HTGR nuclear characteristics have been performed with Kyoto University Critical Assembly (KUCA). In the last study, a neutron detector located about 55 cm away of fuel assembly measured the auto power spectral density. However, the prompt neutron decay constants obtained by this detector was different from that of other detectors. The objective of this study is experimental study of reactor noise analysis by the power spectrum method using neutron detector placed outside reactor core.

Journal Articles

Design for detecting recycling muon after muon-catalyzed fusion reaction in solid hydrogen isotope target

Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09

 Times Cited Count:3 Percentile:44.61(Nuclear Science & Technology)

A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 $$mu$$s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion ($$mu$$CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after $$mu$$CF reaction.

Journal Articles

Time evolution calculation of muon catalysed fusion; Emission of recycling muons from a two-layer hydrogen film

Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08

 Times Cited Count:3 Percentile:44.61(Nuclear Science & Technology)

A muon ($$mu$$) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by $$mu$$ and form a muonic hydrogen molecular ion, dt$$mu$$. Due to the short inter-nuclear distance of dt$$mu$$, the nuclear fusion, d +t$$rightarrow alpha$$ + n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion ($$mu$$CF). Recently, the interest on $$mu$$CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of $$mu$$CF in a two-layered hydrogen isotope target.

Journal Articles

Dynamical response of transition-edge sensor microcalorimeters to a pulsed charged-particle beam

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I.-H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

IEEE Transactions on Applied Superconductivity, 31(5), p.2101704_1 - 2101704_4, 2021/08

 Times Cited Count:1 Percentile:10.62(Engineering, Electrical & Electronic)

A superconducting transition-edge sensor (TES) microcalorimeter is an ideal X-ray detector for experiments at accelerator facilities because of good energy resolution and high efficiency. To study the performance of the TES detector with a high-intensity pulsed charged-particle beam, we measured X-ray spectra with a pulsed muon beam at the Japan Proton Accelerator Research Complex (J-PARC) in Japan. We found substantial temporal shifts of the X-ray energy correlated with the arrival time of the pulsed muon beam, which was reasonably explained by pulse pileup due to the incidence of energetic particles from the initial pulsed beam.

Journal Articles

Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms

Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.

Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08

 Times Cited Count:13 Percentile:84.11(Optics)

Journal Articles

Deexcitation dynamics of muonic atoms revealed by high-precision spectroscopy of electronic $$K$$ X rays

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I. H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

Physical Review Letters, 127(5), p.053001_1 - 053001_7, 2021/07

 Times Cited Count:15 Percentile:80.44(Physics, Multidisciplinary)

We observed electronic $$K$$X rays emitted from muonic iron atoms using a superconducting transition-edge-type sensor microcalorimeter. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic $$K$$$$alpha$$ and $$K$$$$beta$$ X rays together with the hypersatellite $$K$$$$alpha$$ X rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the $$L$$-shell electrons, accompanied by electron side-feeding. Assisted by a simulation, this data clearly reveals the electronic $$K$$- and $$L$$-shell hole production and their temporal evolution during the muon cascade process.

Journal Articles

Simulation of Lagrangian pollutant in Jakarta urban district using Lattice Boltzmann method

Yokouchi, Hiroshi*; Inagaki, Atsushi*; Kanda, Manabu*; Onodera, Naoyuki

Doboku Gakkai Rombunshu, B1 (Suikogaku) (Internet), 76(2), p.I_253 - I_258, 2020/00

Hight-resolution pollutant model embedded into Lattice Boltzmann method (LBM) is constructed. We focuses on Particle pollutants. Flow field is calculated using D3Q27 model of LBM and particle is calculated by Lagrangian method. Using this model, we discuss the change in concentration distribution when there is a huge building (GARUDA) in Jakarta as a application. As a result, we can find the relation of differences in particle density and differences in flow velocity due to GARUDA. When the velocity in the case w/o GARUDA is faster than the other, particle velocity in the case w/o GARUDA is reduced. And also, we can find the velocity near the solid boundary is underestimated and the particle density is higher than theoretical value. However, this model is valid far away from the solid boundary.

Journal Articles

Inner and outer-layer similarity of the turbulence intensity profile over a realistic urban geometry

Inagaki, Atsushi*; Wangsaputra, Y.*; Kanda, Manabu*; Y$"u$cel, M.*; Onodera, Naoyuki; Aoki, Takayuki*

SOLA (Scientific Online Letters on the Atmosphere) (Internet), 16, p.120 - 124, 2020/00

 Times Cited Count:1 Percentile:4.23(Meteorology & Atmospheric Sciences)

The similarity of the turbulence intensity profile with the inner-layer and the outer-layer scalings were examined for an urban boundary layer using numerical simulations. The simulations consider a developing neutral boundary layer over realistic building geometry. The computational domain covers an 19.2 km by 4.8 km and extends up to a height of 1 km with 2-m grids. Several turbulence intensity profiles are defined locally in the computational domain. The inner- and outer-layer scalings work well reducing the scatter of the turbulence intensity within the inner- and outer-layers, respectively, regardless of the surface geometry. Although the main scatters among the scaled profiles are attributed to the mismatch of the parts of the layer and the scaling parameters, their behaviors can also be explained by introducing a non-dimensional parameter which consists of the ratio of length or velocity.

Journal Articles

New precise measurements of muonium hyperfine structure at J-PARC MUSE

Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.

EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01

 Times Cited Count:13 Percentile:98.93(Quantum Science & Technology)

Journal Articles

New precise measurement of muonium hyperfine structure interval at J-PARC

Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11

 Times Cited Count:3 Percentile:86.37(Physics, Atomic, Molecular & Chemical)

Journal Articles

A Numerical study of turbulence statistics and the structure of a spatially-developing boundary layer over a realistic urban geometry

Inagaki, Atsushi*; Kanda, Manabu*; Ahmad, N. H.*; Yagi, Ayako*; Onodera, Naoyuki; Aoki, Takayuki*

Boundary-Layer Meteorology, 164(2), p.161 - 181, 2017/08

 Times Cited Count:30 Percentile:73.33(Meteorology & Atmospheric Sciences)

The applicability of outer-layer scaling is examined by numerical simulation of a developing neutral boundary layer over a realistic building geometry of Tokyo. Large-eddy simulations are carried out over a large computational domain 19.2 km $$times$$ 4.8 km $$times$$1 km, with a fine grid spacing (2 m) using the lattice-Boltzmann method with massively parallel graphics processing units. Results from simulations show that outer-layer features are maintained for turbulence statistics in the upper part of the boundary layer, as well as the width of predominant streaky structures throughout the entire boundary layer. This is caused by the existence of very large streaky structures extending throughout the entire boundary layer, which follow outer-layer scaling with a self-preserving development. We assume the top-down mechanism in the physical interpretation of results.

Journal Articles

New muonium HFS measurements at J-PARC/MUSE

Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12

 Times Cited Count:7 Percentile:90.97(Physics, Atomic, Molecular & Chemical)

JAEA Reports

The Uranium waste fluid processing examination by liquid and liquid extraction method using the emulsion flow method

Kanda, Nobuhiro; Daiten, Masaki; Endo, Yuji; Yoshida, Hideaki; Mita, Yutaka; Naganawa, Hirochika; Nagano, Tetsushi; Yanase, Nobuyuki

JAEA-Technology 2015-007, 43 Pages, 2015/03

JAEA-Technology-2015-007.pdf:5.33MB

The centrifuge which has the subtlety information concerning the nuclear nonproliferation used for uranium enrichment technical development exists in the uranium enrichment facilities of Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency. This centrifugal is performing separation processing of the radioactive material adhering to the surface of parts by wet decontamination of ultrasonic cleaning by dilute sulfuric acid and water, etc. By removing the uranium contained in waste fluid, generated sludge reduces activity concentration. And the possibility of reduction of sludge processing is examined. For this reason, from the 2007 fiscal year, Nuclear Science and Engineering Directorate and cooperation are aimed at, and development of the extraction separation technology of the "uranium" by the emulsion flow method is furthered. The test equipment using the developed emulsion flow method was tested. And dilute sulfuric acid and water were used for the examination as actual waste fluid. The result checked whether the various performances in Basic test carried out in Nuclear Science and Engineering Directorate would be obtained.

Journal Articles

Continuous extraction of uranium from actual uranium-containing liquid wastes using an "emulsion flow" extractor

Nagano, Tetsushi; Yanase, Nobuyuki; Naganawa, Hirochika; Mitamura, Hisayoshi; Hanzawa, Yukiko; Mita, Yutaka; Kanda, Nobuhiro; Ohashi, Yusuke; Endo, Yuji; Matsubara, Tatsuo

Nihon Genshiryoku Gakkai Wabun Rombunshi, 12(4), p.277 - 285, 2013/12

no abstracts in English

Journal Articles

Measurement of radiolytic yield of nitric acid in air

Kanda, Yukio*; Oki, Yuichi*; Yokoyama, Sumi; Sato, Kaoru; Noguchi, Hiroshi; Tanaka, Susumu*; Iida, Takao*

Radiation Physics and Chemistry, 74(5), p.338 - 340, 2005/12

 Times Cited Count:5 Percentile:35.66(Chemistry, Physical)

The operation of high-energy accelerators leads to the production of radiolytic noxious gases, such as ozone and nitrogen compounds in the air of the beam-line tunnels. Among nitrogen compounds, nitric acid is a principal radiolytic compound produced in large quantities. In the high-intensity proton accelerator, such as J-PARC, a very strong radiation environment leads to an abundant production of nitric acid. A quantitative assessment of the damage due to corrosion with nitric acid is essential for machine maintenance and information concerning the formation of nitric acid is a requisite for that. In this work, the G-value for nitric acid production was measured by irradiating atmospheric air with 48MeV-protons. The G-value was obtained to be 1.46$$pm$$0.12. The G-value for nitric acid production obtained in this experiment was larger than the estimated value, but very close to the value of 1.5 given by irradiating the air with Co-60-$$gamma$$rays.

Journal Articles

Characterization of radionuclides formed by high-energy neutron irradiation

Yokoyama, Sumi; Sato, Kaoru; Noguchi, Hiroshi; Tanaka, Susumu; Iida, Takao*; Furuichi, Shinya*; Kanda, Yukio*; Oki, Yuichi*; Kaneto, Taihei*

Radiation Protection Dosimetry, 116(1-4), p.401 - 405, 2005/12

 Times Cited Count:1 Percentile:10.41(Environmental Sciences)

The physicochemical property of radionuclides suspended in the air is an important parameter to evaluate internal doses due to the inhalation of the airborne radionuclides and to develop the air monitoring system in high-energy proton accelerator facilities. This study focuses on the property of radioactive airborne chlorine ($$^{38}$$Cl and $$^{39}$$Cl) and sulfur ($$^{38}$$S) formed from Ar gas by irradiation with high-energy neutrons. As a result of the irradiation to a mixture of Ar gas and dry air, $$^{38}$$Cl and $$^{39}$$Cl existed as non-acidic gas and $$^{38}$$S was present as acidic gas. Further, it was found that in the high-energy neutron irradiation to aerosol containing-Ar gas, the higher the amount of radioactive aerosols becomes, the lower that of radioactive acidic gas becomes.

Journal Articles

Design of the anchor wall using 3D finite element method

Iha, Akane*; Matsubara, Hitoshi; Iraha, Shigeo*; Kanda, Yasuyuki*

Konkurito Kogaku Nenji Rombunshu (DVD-ROM), 27(2), p.1663 - 1668, 2005/00

The concrete structures such a reactor building are able to resist external forces by interaction behavior such as concrete, reinforcements, steel frames and the foundation. Therefore, it is a very important subject to solve analytically the displacement behavior and the stress distribution because the safety of structures and safe security can be offered by it. In general, such a problem is solved by using the beam theory. However, it is impossible to evaluate the different behavior or stress distribution on every component. In this paper, 3-dimensional finite element analysis of full-scale anchor wall is performed. In addition, all composition material is taken into consideration in this analysis. Consequently, concrete interaction behavior with many components is solved, and the displacement behavior and concentration of stress also is elucidated.

64 (Records 1-20 displayed on this page)