Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 52

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Composite with a glassy nonporous coordination polymer enhances gas adsorption selectivity

Zheng, X.*; Kato, Masaru*; Uemura, Yohei*; Matsumura, Daiju; Yagi, Ichizo*; Takahashi, Kiyonori*; Noro, Shinichiro*; Nakamura, Takayoshi*

Inorganic Chemistry, 62(3), p.1257 - 1263, 2023/01

 Times Cited Count:1 Percentile:58.61(Chemistry, Inorganic & Nuclear)

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Electrochemically driven specific alkaline metal cation adsorption on a graphene interface

Yasuda, Satoshi; Tamura, Kazuhisa; Kato, Masaru*; Asaoka, Hidehito; Yagi, Ichizo*

Journal of Physical Chemistry C, 125(40), p.22154 - 22162, 2021/10

 Times Cited Count:10 Percentile:57.69(Chemistry, Physical)

Understanding electrochemical behavior of the alkaline metal cation-graphene interface in electrolyte is essential for understanding the fundamental electrochemical interface and development of graphene-based technologies. We report comprehensive analysis of the electrochemical behavior of both alkaline metal cations and graphene using electrochemical surface X-ray diffraction (EC-SXRD) and Raman (EC-Raman) spectroscopic techniques in which the interfacial structure of cations and the charging state and mechanical strain of the graphene can be elucidated. EC-SXRD and cyclic voltammetry demonstrated electrochemically driven specific adsorption and desorption of cations on the graphene surface involved in the dehydration and hydration process. This study provides new insight for understanding fundamental electrochemical behavior of the alkaline metal cation-graphene interface and contributes to the development of carbon-based novel applications.

Journal Articles

Impact of heterometallic cooperativity of iron and copper active sites on electrocatalytic oxygen reduction kinetics

Kato, Masaru*; Fujibayashi, Natsuki*; Abe, Daiki*; Matsubara, Naohiro*; Yasuda, Satoshi; Yagi, Ichizo*

ACS Catalysis, 11(4), p.2356 - 2365, 2021/02

 Times Cited Count:36 Percentile:88.11(Chemistry, Physical)

Fe-N-C oxygen reduction reaction catalyst is a key materials in polymer electrolyte fuel cell. However, the many Fe-N-C electrocatalysts still suffer from product selectivity due to the production of H$$_{2}$$O$$_{2}$$ as the byproduct. In this work, we synthesized an ORR electrocatalyst of Cu$$^{-}$$, Fe$$^{-}$$, and N-doped carbon nanotubes. This heterobimetallic catalyst showed the selective four electron reduction of O$$_{2}$$ to H$$_{2}$$O. Kinetic analysis of the electrocatalytic ORR and hydrogen peroxide reduction reaction in acidic media revealed that Cu, Fe-N-doped catalyst showed two orders of magnitude higher rate constants for the direct four electron reduction of O$$_{2}$$ to H$$_{2}$$O than those for the two electron reduction of O$$_{2}$$ to H$$_{2}$$O$$_{2}$$, whereas a monometallic Fe-N-doped catalyst showed the same order of magnitude, indicating that the heterometallic cooperativity had a drastic impact on the ORR kinetics.

Journal Articles

Electronic effects of nitrogen atoms of supports on Pt-Ni rhombic dodecahedral nanoframes for oxygen reduction

Kato, Masaru*; Nakahoshiba, Ryota*; Ogura, Kazuya*; Tokuda, Shoichi*; Yasuda, Satoshi; Higashi, Kotaro*; Uruga, Tomoya*; Uemura, Yohei*; Yagi, Ichizo*

ACS Applied Energy Materials (Internet), 3(7), p.6768 - 6774, 2020/07

 Times Cited Count:15 Percentile:62.59(Chemistry, Physical)

To understand electronic effects of nitrogen-doped and polymer-coated carbon supports on the catalytic activity of Pt-based nanostructured catalysts, we prepared Pt$$_{3}$$Ni nanoframes (NFs) supported on polybenzimidazole (PBI)-coated and uncoated carbon nanotubes for the oxygen reduction reaction (ORR), and then compared their catalytic activities and electronic properties with those of NFs immobilized on nitrogen-doped and undoped carbon supports. Although both PBI-coating and nitrogen-doping approaches improved the catalytic activity of NFs, ${it ex situ}$ X-ray photoelectron spectroscopy and ${it in situ}$ X-ray absorption spectroscopy revealed that nitrogen doping showed electronic effects on NFs, whereas PBI-coating showed almost no impact on the electronic state of NFs but stabilized Pt(OH)$$_{rm ad}$$ species under electrochemical conditions. Our studies demonstrate that difference in microscopic environments of nitrogen atoms at the catalyst/support interface is highly sensitive to the electronic effects of supports on Pt-based electrocatalysts.

Journal Articles

Confinement of hydrogen molecules at graphene-metal interface by electrochemical hydrogen evolution reaction

Yasuda, Satoshi; Tamura, Kazuhisa; Terasawa, Tomoo; Yano, Masahiro; Nakajima, Hideaki*; Morimoto, Takahiro*; Okazaki, Toshiya*; Agari, Ryushi*; Takahashi, Yasufumi*; Kato, Masaru*; et al.

Journal of Physical Chemistry C, 124(9), p.5300 - 5307, 2020/03

 Times Cited Count:14 Percentile:60.14(Chemistry, Physical)

Confinement of hydrogen molecules at graphene-substrate interface has presented significant importance from the viewpoints of development of fundamental understanding of two-dimensional material interface and energy storage system. In this study, we investigate H$$_{2}$$ confinement at a graphene-Au interface by combining selective proton permeability of graphene and the electrochemical hydrogen evolution reaction (electrochemical HER) method. After HER on a graphene/Au electrode in protonic acidic solution, scanning tunneling microscopy finds that H$$_{2}$$ nanobubble structures can be produced between graphene and the Au surface. Strain analysis by Raman spectroscopy also shows that atomic size roughness on the graphene/Au surface originating from the HER-induced strain relaxation of graphene plays significant role in formation of the nucleation site and H$$_{2}$$ storage capacity.

Journal Articles

Incorporation of multinuclear copper active sites into nitrogen-doped graphene for electrochemical oxygen reduction

Kato, Masaru*; Muto, Marika*; Matsubara, Naohiro*; Uemura, Yohei*; Wakisaka, Yuki*; Yoneuchi, Tsubasa*; Matsumura, Daiju; Ishibara, Tomoko*; Tokushima, Takashi*; Noro, Shinichiro*; et al.

ACS Applied Energy Materials (Internet), 1(5), p.2358 - 2364, 2018/05

 Times Cited Count:12 Percentile:43.4(Chemistry, Physical)

Journal Articles

Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

Higashi, Yoichi*; Nagai, Yuki; Yoshida, Tomohiro*; Kato, Masaru*; Yanase, Yoichi*

Physica C, 518, p.1 - 4, 2015/11

 Times Cited Count:0 Percentile:0(Physics, Applied)

We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair- density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceed the critical value.

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2013 - March 31, 2014)

Sato, Takeshi; Muto, Shigeo; Akiyama, Kiyomitsu; Aoki, Kazufumi; Okamoto, Akiko; Kawakami, Takeshi; Kume, Nobuhide; Nakanishi, Chika; Koie, Masahiro; Kawamata, Hiroyuki; et al.

JAEA-Review 2014-048, 69 Pages, 2015/02

JAEA-Review-2014-048.pdf:13.91MB

JAEA was assigned as a designated public institution under the Disaster Countermeasures Basic Act and under the Armed Attack Situations Response Act. Based on these Acts, the JAEA has the responsibility of providing technical support to the national government and/or local governments in case of disaster responses or response in the event of a military attack, etc. In order to fulfill the tasks, the JAEA has established the Emergency Action Plan and the Civil Protection Action Plan. In case of a nuclear emergency, NEAT dispatches specialists of JAEA, supplies the national government and local governments with emergency equipment and materials, and gives technical advice and information. In normal time, NEAT provides various exercises and training courses concerning nuclear disaster prevention to those personnel taking an active part in emergency response institutions of the national and local governments, police, fire fighters, self-defense forces, etc. in addition to the JAEA itself. The NEAT also researches nuclear disaster preparedness and response, and cooperates with international organizations. In the FY2013, the NEAT accomplished the following tasks: (1) Technical support activities as a designated public institution in cooperation with the national and local governments, etc. (2) Human resource development, exercise and training of nuclear emergency response personnel for the national and local governments, etc. (3) Researches on nuclear disaster preparedness and response, and sending useful information (4) International contributions to Asian countries on nuclear disaster preparedness and response in collaboration with the international organizations

JAEA Reports

Engineering scale development test of MOX fuel fabrication technology to establish commercialized fast reactor fuel, 1; The O/M ratio preparation tests of sintered pellets

Takato, Kiyoto; Murakami, Tatsutoshi; Suzuki, Kiichi; Shibanuma, Kimikazu; Hatanaka, Nobuhiro; Yamaguchi, Bungo; Tobita, Yoshimasa; Shinozaki, Masaru; Iimura, Naoto; Okita, Takatoshi; et al.

JAEA-Technology 2013-026, 42 Pages, 2013/10

JAEA-Technology-2013-026.pdf:3.17MB

In order to cope with making a commercial fast reactor fuel burn-up higher, oxygen-to-metal (O/M) ratio in the fuel specification is designed to 1.95. As the test for the fabrication of such low O/M ratio pellets, two kinds of O/M ratio preparation tests of different reduction mechanism were done. In the first test, we evaluated the technology to prepare the O/M ratio low by annealing the sintered pellets in production scale. In addition, we know from past experience that O/M ratio of the sintered pellets can be reduced by residual carbon when the de-waxed pellets with high carbon content are sintered. Thus, in another test, the green pellets containing a large amount of organic additives were sintered and we evaluated the technology to produce the low O/M ratio sintered pellets by the reduction due to residual carbon. From the first test results, we found a tendency that the higher annealing temperature or the longer annealing time resulted in the lower O/M ratio. However, the amount of O/M ratio reduction was small and it is estimated that a substantial annealing time is necessary to prepare the O/M ratio to 1.95. It is considered that reducing O/M ratio by annealing was difficult because atmosphere gas containing oxygen released from pellets remained and the O/M ratio was changed to the value equilibrated with the gas having high oxygen potential. From another test results, it was confirmed that O/M ratio was reduced by the reduction due to residual carbon. We found that it was important to manage an oxygen potential of atmosphere gas in a sintering furnace low to reduce the O/M ratio effectively.

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2011

Watahiki, Shunsuke; Hanakawa, Hiroki; Imaizumi, Tomomi; Nagata, Hiroshi; Ide, Hiroshi; Komukai, Bunsaku; Kimura, Nobuaki; Miyauchi, Masaru; Ito, Masayasu; Nishikata, Kaori; et al.

JAEA-Technology 2013-021, 43 Pages, 2013/07

JAEA-Technology-2013-021.pdf:5.12MB

The number of research reactors in the world is decreasing because of their aging. On the other hand, the necessity of research reactor, which is used for human resources development, progress of the science and technology, industrial use and safety research is increasing for the countries which are planning to introduce the nuclear power plants. From above background, the Neutron Irradiation and Testing Reactor Center began to discuss a basic concept of Multipurpose Compact Research Reactor (MCRR) for education and training, etc., on 2010 to 2012. This activity is also expected to contribute to design tool improvement and human resource development in the center. In 2011, design study of reactor core, irradiation facilities with high versatility and practicality, and hot laboratory equipment for the production of Mo-99 was carried out. As the result of design study of reactor core, subcriticality and operation time of the reactor in consideration of an irradiation capsule, and about the transient response of the reactor to the reactivity disturbance during automatic control operation, it was possible to do automatic operation of MCRR, was confirmed. As the result of design study of irradiation facilities, it was confirmed that the implementation of an efficient mass production radioisotope Mo-99 can be expected. As the result of design study with hot laboratory facilities, Mo-99 production, RI export devised considered cell and facilities for exporting the specimens quickly was designed.

Journal Articles

Substrate recognition mechanism of a glycosyltrehalose trehalohydrolase from ${it sulfolobus solfataricus}$ KM1

Okazaki, Nobuo; Tamada, Taro; Feese, M. D.*; Kato, Masaru*; Miura, Yutaka*; Komeda, Toshihiro*; Kobayashi, Kazuo*; Kondo, Keiji*; Blaber, M.*; Kuroki, Ryota

Protein Science, 21(4), p.539 - 552, 2012/04

 Times Cited Count:3 Percentile:6.67(Biochemistry & Molecular Biology)

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2010 (Joint research)

Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.

JAEA-Technology 2011-031, 123 Pages, 2012/01

JAEA-Technology-2011-031.pdf:16.08MB

The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.

Journal Articles

Recent progress in the energy recovery linac project in Japan

Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05

Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.

Journal Articles

Electron-beam-induced color imaging of acid-chromic polymer films

Maekawa, Yasunari; Yuasa, Kanako*; Enomoto, Kazuyuki; Matsushita, Harumi*; Kato, Jun*; Yamashita, Takashi*; Ito, Kazuo*; Yoshida, Masaru

Chemistry of Materials, 20(16), p.5320 - 5324, 2008/08

 Times Cited Count:2 Percentile:9.29(Chemistry, Physical)

Polymer films with acid-responsive chromic dyes and acid generators have been designed for an electron beam (EB)-induced color imaging system. Arylsulfonic acid esters and triphenylsulfonium salts were used as an EB-sensitive acid generator; the acid (H$$^{+}$$) allows a chromic reaction with rhodamine B base (RB) and 4,4'-bis(dimethylamino)benzhydrol (BH) to be triggered. Upon EB irradiation, poly(methyl methacrylate) (PMMA) films consisting of RB or BH and acid generators exhibited a characteristic absorption band with $$lambda$$max at 560 and at 612 nm, respectively, and an isosbestic point. These spectral changes clearly indicate that colorless chromic dyes in PMMA are transformed selectively to the colored form. The color imaging of these films was performed by electron beam direct writing (EBDW) with a 50 nm diameter beam to form 100 - 1000 nm line and space patterns and was evaluated by optical and confocal laser microscopy. EBDW on the acid chromic polymer films, especially for BH, yielded clear color imaging of 100 - 200 nm line and space patterns with a dose of only 10 $$mu$$C/cm$$^{2}$$. The confocal laser microscopy gave thinner lines than the laser wavelength (632.8 nm), probably because of the large change in refractive index of the patterned film induced by EB irradiation even with a low energy dose.

Journal Articles

Progress in R&D efforts on the energy recovery linac in Japan

Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.

Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06

Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.

Journal Articles

Superconducting MgB$$_2$$ thin film detector for neutrons

Ishida, Takekazu*; Nishikawa, Masatoshi*; Fujita, Yoshifumi*; Okayasu, Satoru; Katagiri, Masaki*; Sato, Kazuo*; Yotsuya, Tsutomu*; Shimakage, Hisashi*; Miki, Shigehito*; Wang, Z.*; et al.

Journal of Low Temperature Physics, 151(3-4), p.1074 - 1079, 2008/05

 Times Cited Count:36 Percentile:78.05(Physics, Applied)

The superconducting neutron detector using high-quality $$^{10}$$B-enriched MgB$$_2$$ thin films at higher operating temperatures has been proposed, where a resistance change induced by the nuclear reaction of neutron and $$^{10}$$B in MgB$$_2$$ is used to detect a neutron. Cold neutrons from a nuclear research reactor irradiated the MgB$$_2$$ detector, and the output voltage was clearly observed through a low-noise amplifier by using a digital oscilloscope. The out-of-equilibrium thermodynamics was investigated by means of the time-dependent Ginzburg-Landau equations by using the Earth Simulator.

Journal Articles

Direct numerical simulations for non-equilibrium superconducting dynamics at the transition edge; Simulation for MgB$$_{2}$$ neutron detectors

Machida, Masahiko; Kano, Takuma*; Koyama, Tomio*; Kato, Masaru*; Ishida, Takekazu*

Journal of Low Temperature Physics, 151(1), p.58 - 63, 2008/04

 Times Cited Count:11 Percentile:46.07(Physics, Applied)

We perform large-scale numerical simulations on the non-equilibrium superconducting dynamics after a neutron capture at the superconducting transition edge in MgB$$_{2}$$ by solving the time-dependent Ginzburg-Landau equation coupled with the Maxwell and the heat diffusion equations. The simulations are carried out under the current-biased condition in order to explain experimental results made in the JAEA reactor JRR-3, and the time scale of the obtained voltage signal is found tobe almost consistent with the experiments. Moreover, the time evolution of the voltage signal is connected with that of the spatial profile of the superconducting order parameter.

Journal Articles

Novel anisotropic superconductivity in nano-structured superconductors

Kato, Masaru*; Koyama, Tomio*; Machida, Masahiko; Hayashi, Masahiko*; Ebisawa, Hiromichi*; Ishida, Takekazu*

Physica B; Condensed Matter, 403(5-9), p.996 - 998, 2008/04

 Times Cited Count:0 Percentile:0(Physics, Condensed Matter)

Using the Bogoliubov-de Gennes equation of a tight-binding electron model with attractive on-site and nearest-neighbor sites interactions, we investigate the superconducting structure of nano-structured anisotropic superconductors. Numerical results show that nano-scaled $$pi$$/4-rotated square d-wave superconductors show various type of uperconductivities depending on the size. Especially, $$s$$+$$id$$ superconductivity, appears when size of superconductors is 10 times of coherence length.

Journal Articles

Simulation of logic gate using d-dot's

Nakajima, Susumu*; Kato, Masaru*; Koyama, Tomio*; Machida, Masahiko; Ishida, Takekazu*; Nori, F.*

Physica C, 468(7-10), p.769 - 772, 2008/04

 Times Cited Count:4 Percentile:21.85(Physics, Applied)

A d-dot is a superconducting composite structure of d- and s-wave superconductors, which shows spontaneous half-quantized magnetic fluxes. We developed numerical method to analyze the time development of these spontaneous magnetic fluxes, based on the twocomponents Ginzburg-Landau equation. The d-dot can be used as an element of quantum dot cellular automata logic gates. We show a simulation, which demonstrates the transfer of information between two d-dot's.

52 (Records 1-20 displayed on this page)