Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Gu, G. H.*; Jeong, S. G.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Cho, J.*; Kim, H. S.*; 4 of others*
Journal of Materials Science & Technology, 223, p.308 - 324, 2025/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Sarenac, D.*; Gorbet, G.*; Clark, C. W.*; Cory, D. G.*; Ekinci, H.*; Henderson, M. E.*; Huber, M. G.*; Hussey, D. S.*; Kapahi, C.*; Kienzle, P. A.*; et al.
Physical Review Research (Internet), 6(3), p.L032054_1 - L032054_8, 2024/09
Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Avdeev, M.*; Iida, Kazuki*; Kajimoto, Ryoichi; Park, J.-G.*
Physical Review B, 109(6), p.L060403_1 - L060403_7, 2024/02
Times Cited Count:5 Percentile:86.56(Materials Science, Multidisciplinary)Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Kang, Y.-G.*; Avdeev, M.*; Sibille, R.*; Iida, Kazuki*; Kajimoto, Ryoichi; Lee, K. H.*; et al.
Nature Communications (Internet), 14, p.8346_1 - 8346_9, 2023/12
Times Cited Count:18 Percentile:82.70(Multidisciplinary Sciences)Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:23 Percentile:94.90(Multidisciplinary Sciences)no abstracts in English
Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:6 Percentile:84.52(Astronomy & Astrophysics)Gamma decays were observed in Ca and
Ca following quasi-free one-proton knockout reactions from
Sc. For
Ca, a
ray transition was measured to be 1456(12) keV, while for
Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the
decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for
level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the
and
orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic
Ca and potentially drives the dripline of Ca isotopes to
Ca or even beyond.
Mun, M.-H.*; Shin, I. J.*; Paeng, W.-G.*; Harada, Masayasu*; Kim, Y.*
European Physical Journal A, 59(7), p.149_1 - 149_6, 2023/07
Times Cited Count:3 Percentile:73.33(Physics, Nuclear)Wei, D.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Li, X.*; Harjo, S.; Kawasaki, Takuro; Do, H.-S.*; Bae, J. W.*; Wagner, C.*; et al.
International Journal of Plasticity, 159, p.103443_1 - 103443_18, 2022/12
Times Cited Count:97 Percentile:99.76(Engineering, Mechanical)Kim, G.*; Im, S.*; Jee, H.*; Suh, H.*; Cho, S.*; Kanematsu, Manabu*; Morooka, Satoshi; Koyama, Taku*; Nishio, Yuhei*; Machida, Akihiko*; et al.
Cement and Concrete Research, 159, p.106869_1 - 106869_17, 2022/09
Times Cited Count:26 Percentile:87.48(Construction & Building Technology)Kim, J.-Y.*; Kim, H.-C.*; Yang, G.-S.*; Oka, Makoto
Physical Review D, 103(7), p.074025_1 - 074025_21, 2021/04
Times Cited Count:14 Percentile:62.63(Astronomy & Astrophysics)We investigate the electromagnetic transitions of the singly charmed baryons with spin 3/2, based on a pion mean-field approach, also known as the chiral quark-soliton model, taking into account the rotational corrections and the effects of flavor SU(3) symmetry breaking. We examine the valence- and sea-quark contributions to the electromagnetic transition form factors and find that the quadrupole form factors of the sea-quark contributions dominate over those of the valence-quark ones in the smaller
region, whereas the sea quarks only provide marginal contributions to the magnetic dipole transition form factors of the baryon sextet with spin 3/2. The effects of the flavor SU(3) symmetry breaking are in general very small except for the forbidden transition
by
-spin symmetry. We also discuss the widths of the radiative decays for the baryon sextet with spin 3/2, comparing the present results with those from other works.
Schmitt, C.*; Lemasson, A.*; Schmidt, K.-H.*; Jhingan, A.*; Biswas, S.*; Kim, Y. H.*; Ramos, D.*; Andreyev, A. N.; Curien, D.*; Ciemala, M.*; et al.
Physical Review Letters, 126(13), p.132502_1 - 132502_6, 2021/04
Times Cited Count:20 Percentile:81.52(Physics, Multidisciplinary)Kim, J. G.*; Bae, J. W.*; Park, J. M.*; Woo, W.*; Harjo, S.; Lee, S.*; Kim, H. S.*
Metals and Materials International, 27(2), p.376 - 383, 2021/02
Times Cited Count:10 Percentile:45.58(Materials Science, Multidisciplinary)Yang, Z. H.*; Kubota, Yuki*; Corsi, A.*; Yoshida, Kazuki; Sun, X.-X.*; Li, J. G.*; Kimura, Masaaki*; Michel, N.*; Ogata, Kazuyuki*; Yuan, C. X.*; et al.
Physical Review Letters, 126(8), p.082501_1 - 082501_8, 2021/02
Times Cited Count:56 Percentile:96.11(Physics, Multidisciplinary)A quasifree (,
) experiment was performed to study the structure of the Borromean nucleus
B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for
and
orbitals, and a surprisingly small percentage of 9(2)% was determined for
. Our finding of such a small
component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in
B. The present work gives the smallest
- or
-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of
or
orbitals is not a prerequisite for the occurrence of a neutron halo.
Gens, A.*; Alcoverro, J.*; Blaheta, R.*; Hasal, M.*; Michalec, Z.*; Takayama, Yusuke; Lee, C.*; Lee, J.*; Kim, G. Y.*; Kuo, C.-W.*; et al.
International Journal of Rock Mechanics and Mining Sciences, 137, p.104572_1 - 104572_19, 2021/01
Times Cited Count:23 Percentile:88.09(Engineering, Geological)Bentonite-based engineered barriers are a key component of many repository designs for the confinement of high-level radioactive waste and spent fuel. Given the complexity and interaction of the phenomena affecting the barrier, coupled hydro-mechanical (HM) and thermo-hydro-mechanical (THM) numerical analyses are a potentially useful tool for a better understanding of their behaviour. In this context, a Task (INBEB) was undertaken to study, using numerical analyses, the hydro-mechanical and thermohydro-mechanical Interactions in Bentonite Engineered Barriers within the international cooperative project DECOVALEX 2019. Two large scale tests, largely complementary, were selected for modelling: EB and FEBEX. The EB experiment was carried out under isothermal conditions and artificial hydration and it was dismantled after 10.7 years. The FEBEX test was a temperature-controlled non-isothermal test combined with natural hydration that underwent two dismantling operations, a partial one after 5 years of heating and a final one after a total of 18.4 years of heating. Direct observation of the state of the barriers was possible during the dismantling operations. Four teams performed the HM and THM numerical analyses using a variety of computer codes, formulations and constitutive laws. For each experiment, the basic features of the analyses are described and the comparison between calculations and field observations are presented and discussed. Comparisons involve measurements performed during the performance of the test and data gathered during dismantling. A final evaluation of the performance of the modelling closes the paper.
Kim, S.*; Lee, B.*; Reeder, J. T.*; Seo, S. H.*; Lee, S.-U.*; Hourlier-Fargette, A.*; Shin, J.*; Sekine, Yurina; Jeong, H.*; Oh, Y. S.*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 117(45), p.27906 - 27915, 2020/11
Times Cited Count:104 Percentile:93.94(Multidisciplinary Sciences)In this study, we present a wireless, battery-free, skin-interfaced microfluidic system that combines lateral flow immunoassay for sweat cortisol assay, fluorometric imaging of glucose and ascorbic acid (vitamin C) assays, and digital tracking of sweat rate using electrodes that measure skin galvanic response. Systematic benchtop testing and on-body field studies on human subjects exercising in a gym environment highlight the key multifunctional features of this platform in tracking the biochemical correlates of physical stress.
Gens, A.*; Alcoverro, J.*; Blaheta, R.*; Hasal, M.*; Michalec, Z.*; Takayama, Yusuke; Lee, C.*; Lee, J.*; Kim, G. Y.*; Kuo, C.-W.*; et al.
LBNL-2001267 (Internet), 210 Pages, 2020/10
This document is the final report of Task D of the DECOVALEX-2019 project, presenting the definitions of the problems studied, approaches applied, achievements made and outstanding issues identified for future research. Task D of the DECOVALEX 2019 project is devoted to the study of the hydro-mechanical and thermo-hydro-mechanical Interactions in Bentonite Engineered Barriers. The Task is structured around two large scale in situ experiments that were subjected to well managed dismantling operations that provided direct observations of the state of the barrier after long test periods. Four teams carried out the modelling of the two experiments: Institute of Geonics, of the Czech Academy of Sciences (IGN), supported by SURAO, Czech Republic, Japan Atomic Energy Agency (JAEA), Korea Atomic Energy Research Institute (KAERI) and National Central University of Taiwan (NCU), supported by the Taipower.
Plompen, A. J. M.*; Cabellos, O.*; De Saint Jean, C.*; Fleming, M.*; Algora, A.*; Angelone, M.*; Archier, P.*; Bauge, E.*; Bersillon, O.*; Blokhin, A.*; et al.
European Physical Journal A, 56(7), p.181_1 - 181_108, 2020/07
Times Cited Count:452 Percentile:98.82(Physics, Nuclear)The Joint Evaluated Fission and Fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides U,
U and
Pu, on
Am and
Na,
Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yileds, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 is excellent for a wide range of nuclear technology applications, in particular nuclear energy.
Bae, J. W.*; Jung, J.*; Kim, J. G.*; Park, J. M.*; Harjo, S.; Kawasaki, Takuro; Woo, W.*; Kim, H. S.*
Materialia, 9, p.100619_1 - 100619_15, 2020/03
Baron, P.*; Cornet, S. M.*; Collins, E. D.*; DeAngelis, G.*; Del Cul, G.*; Fedorov, Y.*; Glatz, J. P.*; Ignatiev, V.*; Inoue, Tadashi*; Khaperskaya, A.*; et al.
Progress in Nuclear Energy, 117, p.103091_1 - 103091_24, 2019/11
Times Cited Count:104 Percentile:94.22(Nuclear Science & Technology)The results of an international review of separation processes for spent nuclear fuel (SNF) recycling in future closed fuel cycles with the evaluation of Technology Readiness Level are reported. This study was made by the Expert Group on Fuel Recycling Chemistry (EGFRC) organised by the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD). A unique feature of this study was that processes were classified according to a hierarchy of separations aimed at different elements within spent fuel (uranium; uranium-plutonium co-recovery; minor actinides; high heat generating radionuclides) and also the Head-end processes, used to prepare the SNF for chemical separation, were included. Separation processes covered both wet (hydrometallurgical) and dry (pyro-chemical) processes.
Kim, J. G.*; Bae, J. W.*; Park, J. M.*; Woo, W.*; Harjo, S.; Chin, K.-G.*; Lee, S.*; Kim, H. S.*
Scientific Reports (Internet), 9, p.6829_1 - 6829_7, 2019/05
Times Cited Count:15 Percentile:49.79(Multidisciplinary Sciences)