Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Jinno, Satoshi; Watanabe, Takahiro; Nishio, Tomohiro*; Ogawa, Yumi; Omae, Akiomi*; Kimura, Kenji; et al.
Dai-36-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.90 - 92, 2025/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Kimura, Koji*; Tsutsui, Satoshi*; Yamamoto, Yuta*; Nakano, Akitoshi*; Kawamura, Keisuke*; Kajimoto, Ryoichi; Kamazawa, Kazuya*; Martin, A.*; Webber, K. G.*; Kakimoto, Kenichi*; et al.
Physical Review B, 110(13), p.134314_1 - 134314_10, 2024/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Tsubota, Yoichi; Kimura, Yasuhisa; Nagai, Yuya; Kojima, Sho*; Tokonami, Shinji*; Nakagawa, Takahiro
Proceedings of International Conference on Decommissioning Challenges; Role and importance of innovations (DEM 2024) (Internet), 7 Pages, 2024/05
An in-situ monitoring system for the -aerosol in the harsh (high humidity, high
/
-ray background) environment expected inside the 1F-PCV was developed. A part of the system was installed at the glovebox dismantling site of a MOX fuel facility, and its fast response performance and long-term operation capability were demonstrated.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Takahashi, Yuto*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; et al.
Dai-25-Kai AMS Shimpojiumu Hokokushu (Internet), 3 Pages, 2024/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.
Dai-35-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.17 - 19, 2024/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
Iwata, Takuma*; Kosa, Towa*; Nishioka, Yukimi*; Owada, Kiyotaka*; Sumida, Kazuki; Annese, E.*; Kakoki, Masaaki*; Kuroda, Kenta*; Iwasawa, Hideaki*; Arita, Masashi*; et al.
Scientific Reports (Internet), 14, p.127_1 - 127_8, 2024/01
Times Cited Count:7 Percentile:89.50(Multidisciplinary Sciences)Sumida, Kazuki; Higaki, Sota*; Sato, Hitoshi*; Tsuru, Daichi*; Miyamoto, Koji*; Okuda, Taichi*; Kuroiwa, Yoshihiro*; Moriyoshi, Chikako*; Takase, Koichi*; Oguchi, Tamio*; et al.
Journal of the Physical Society of Japan, 92(8), p.084706_1 - 084706_6, 2023/08
Times Cited Count:1 Percentile:23.32(Physics, Multidisciplinary)Nagai, Yuya; Shuji, Yoshiyuki; Kawasaki, Takeshi; Aita, Takahiro; Kimura, Yasuhisa; Nemoto, Yasunori*; Onuma, Takeshi*; Tomiyama, Noboru*; Hirano, Koji*; Usui, Yasuhiro*; et al.
JAEA-Technology 2022-039, 117 Pages, 2023/06
Japan Atomic Energy Agency (JAEA) manages wide range of nuclear facilities. Many of these facilities are required to be performed adjustment with the aging and complement with the new regulatory standards and the earthquake resistant, since the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Station accident. It is therefore desirable to promote decommissioning of facilities that have reached the end of their productive life in order to reduce risk and maintenance costs. However, the progress of facility decommissioning require large amount of money and radioactive waste storage space. In order to address these issues, JAEA has formulated a "The Medium/Long-Term Management Plan of JAEA Facilities" with three pillars: (1) consolidation and prioritization of facilities, (2) assurance of facility safety, and (3) back-end countermeasures. In this plan, Plutonium Fuel Fabrication Facility has been selected as primary decommissioned facility, and dismantling of equipment in the facilities have been underway. In this report, size reduction activities of the glove box W-9 and a part of tunnel F-1, which was connected to W-9, are presented, and the obtained findings are highlighted. The glovebox W-9 had oxidation & reduction furnace, and pellet crushing machine as equipment interior. The duration of activity took six years from February 2014 to February 2020, including suspended period of 4 years due to the enhanced authorization approval process.
Miyazaki, Hidetoshi*; Akatsuka, Tatsuyoshi*; Kimura, Koji*; Egusa, Daisuke*; Sato, Yohei*; Itakura, Mitsuhiro; Takagi, Yasumasa*; Yasui, Akira*; Ozawa, Kenichi*; Mase, Kazuhiko*; et al.
Materials Transactions, 64(6), p.1194 - 1198, 2023/06
Times Cited Count:1 Percentile:12.80(Materials Science, Multidisciplinary)We investigated the electronic structure of the MgZn
Y
alloy using hard and soft X-ray photoemission spectroscopy and electronic band structure calculations to understand the mechanism of the phase stability of this material. Electronic structure of the Mg
Zn
Y
alloy showed a semi-metallic electronic structure with a pseudo-gap at the Fermi level. The observed electronic structure of the Mg
Zn
Y
alloy suggests that the presence of a pseudogap structure is responsible for phase stability.
Sato, Yohei*; Egusa, Daisuke*; Miyazaki, Hidetoshi*; Kimura, Koji*; Itakura, Mitsuhiro; Terauchi, Masami*; Abe, Eiji*
Materials Transactions, 64(5), p.950 - 954, 2023/05
Times Cited Count:1 Percentile:12.80(Materials Science, Multidisciplinary)Dilute Mg-Zn-Y alloy with a mille-feuille structure (MFS) exhibits a mechanical strength comparable to Mg-Zn-Y alloy with long period stacking/ordered (LPSO) structure through kink deformation. In order to deepen understanding the thermal stability of the MFS-type Mg alloys, it is required to clarify the solute cluster structures composed of Zn and Y in solute enriched stacking faults (SESFs). In this study, electron energy-loss and energy dispersive X-ray spectroscopy based on scanning transmission electron microscopy (STEM-EELS/EDS) were conducted to investigate the electronic structure and composition of Zn and Y in the SESFs of the MFS-Mg alloy. Zn-L2,3 spectra indicated that the valence charges of Zn in the dilute Mg alloy were different from that of the LPSO-type Mg-Zn-Y alloy. In addition, the intensity ratio of L3/L2 in Y-L2,3 spectrum of the dilute MFS-Mg alloy was larger than that of the LPSO-Mg alloy, reflecting the electron occupancies of 4d3/2 and 4d5/2 orbitals of Y atoms were different from those of the LPSO-Mg alloys. STEM-EELS analysis of the SESF composition in the dilute MFS-Mg alloy indicated that the Zn/Y ratio should be lower than that of the LPSO-Mg alloy, which was confirmed also by STEM-EDS measurements. These results indicate that the cluster structure in the SESFs of the dilute MFS-Mg alloy should be different from the ideal Zn6Y8 cluster in the LPSO-type Mg-Zn-Y alloys.
Isaka, Koji; Suwa, Masayuki; Kimura, Kazuya; Suzuki, Makoto; Ikekame, Yoshinori; Nagadomi, Hideki
JAEA-Technology 2021-039, 48 Pages, 2023/02
JRR-3 Process control system is used from the initial criticality (1990) after remodeling JRR- 3 as equipment used for monitoring and control of flow rate, temperature, pressure, water level, etc. of coolant and operation of nuclear reactor equipment, and it became necessary to renew as the aging progressed and spare parts could not be obtained sufficiently. Upon renewal, from the viewpoint of ensuring conservation of the core such as decay heat removal and minimizing the impact on reactor users and minimizing costs, it is important not to stop long-term reactor shutdown we planned to divide it into three stages and make it on a continuous basis. This report summarizes the renewal plan and renewal work divided into three stages.
Iimura, Shun*; Rosenbusch, M.*; Takamine, Aiko*; Tsunoda, Yusuke*; Wada, Michiharu*; Chen, S.*; Hou, D. S.*; Xian, W.*; Ishiyama, Hironobu*; Yan, S.*; et al.
Physical Review Letters, 130(1), p.012501_1 - 012501_6, 2023/01
Times Cited Count:13 Percentile:88.25(Physics, Multidisciplinary)Sumida, Kazuki; Sakuraba, Yuya*; Masuda, Keisuke*; Kono, Takashi*; Kakoki, Masaaki*; Goto, Kazuki*; Zhou, W.*; Miyamoto, Koji*; Miura, Yoshio*; Okuda, Taichi*; et al.
Communications Materials (Internet), 1, p.89_1 - 89_9, 2020/11
Yoshikawa, Tomoki*; Antonov, V. N.*; Kono, Takashi*; Kakoki, Masaaki*; Sumida, Kazuki; Miyamoto, Koji*; Takeda, Yukiharu; Saito, Yuji; Goto, Kazuki*; Sakuraba, Yuya*; et al.
Physical Review B, 102(6), p.064428_1 - 064428_7, 2020/08
Times Cited Count:3 Percentile:15.07(Materials Science, Multidisciplinary)Shikin, A. M.*; Estyunin, D. A.*; Klimovskikh, I. I.*; Filnov, S. O.*; Kumar, S.*; Schwier, E. F.*; Miyamoto, Koji*; Okuda, Taichi*; Kimura, Akio*; Kuroda, Kenta*; et al.
Scientific Reports (Internet), 10, p.13226_1 - 13226_13, 2020/08
Times Cited Count:73 Percentile:95.57(Multidisciplinary Sciences)Kono, Takashi*; Kakoki, Masaaki*; Yoshikawa, Tomoki*; Wang, X.*; Sumida, Kazuki*; Miyamoto, Koji*; Muro, Takayuki*; Takeda, Yukiharu; Saito, Yuji; Goto, Kazuki*; et al.
Physical Review B, 100(16), p.165120_1 - 165120_6, 2019/10
Times Cited Count:7 Percentile:31.53(Materials Science, Multidisciplinary)Kitao, Takahiko; Takeuchi, Yoshikatsu; Kimura, Takashi; Kojima, Junji; Shioya, Satoshi; Tasaki, Takashi; Nakamura, Hironobu
Nihon Kaku Busshitsu Kanri Gakkai Dai-38-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2018/04
In order to ensure and strengthen nuclear security measures, an active cultivation of nuclear security culture implemented by both entire organization and individual persons is vitally essential. Tokai reprocessing facility has conducted various activities such as case study education and training, yearly posters and patrolling the site by upper-level management that all employees hold a deep rooted belief that there is a credible insider and outsider threat, and that nuclear security is important. These activities are conducted in order to establish the foundation of beliefs and attitudes of effective nuclear security culture based on the IAEA guideline. This report introduces our activities fostering nuclear security culture in Tokai reprocessing facility that the evaluation and the continuous improvement of bidirectional activities by both top-down from multiple management levels and bottom-up from individual employee, and our challenges need to be worked on for the future.
Ito, Yuta*; Schury, P.*; Wada, Michiharu*; Arai, Fumiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Ishizawa, Satoshi*; Kaji, Daiya*; Kimura, Sota*; Koura, Hiroyuki; et al.
Physical Review Letters, 120(15), p.152501_1 - 152501_6, 2018/04
Times Cited Count:66 Percentile:92.56(Physics, Multidisciplinary)Masses of Es,
Fm and the transfermium nuclei
Md, and
No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed
neutron shell closure, have been directly measured using a multi-reflection time-of-flight mass spectrograph. The masses of
Es and
Md were measured for the first time. Using the masses of
Md as anchor points for
decay chains, the masses of heavier nuclei, up to
Bh and
Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter
derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed
neutron shell closure for Md and Lr.
Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.