Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hasegawa, Yuta; Aoki, Takayuki*; Kobayashi, Hiromichi*; Idomura, Yasuhiro; Onodera, Naoyuki
Parallel Computing, 108, p.102851_1 - 102851_12, 2021/12
Times Cited Count:6 Percentile:51.00(Computer Science, Theory & Methods)The aerodynamics simulation code based on the lattice Boltzmann method (LBM) using forest-of-octrees-based block-structured local mesh refinement (LMR) was implemented, and its performance was evaluated on GPU-based supercomputers. We found that the conventional Space-Filling-Curve-based (SFC) domain partitioning algorithm results in costly halo communication in our aerodynamics simulations. Our new tree cutting approach improved the locality and the topology of the partitioned sub-domains and reduced the communication cost to one-third or one-fourth of the original SFC approach. In the strong scaling test, the code achieved maximum speedup at the performance of 2207 MLUPS (mega- lattice update per second) on 128 GPUs. In the weak scaling test, the code achieved 9620 MLUPS at 128 GPUs with 4.473 billion grid points, while the parallel efficiency was 93.4% from 8 to 128 GPUs.
Hasegawa, Yuta; Aoki, Takayuki*; Kobayashi, Hiromichi*; Idomura, Yasuhiro; Onodera, Naoyuki
Keisan Kogaku Koenkai Rombunshu (CD-ROM), 26, 6 Pages, 2021/05
We introduce an improved domain partitioning method called "tree cutting approach" for the aerodynamics simulation code based on the lattice Boltzmann method (LBM) with the forest-of-octrees-based local mesh refinement (LMR). The conventional domain partitioning algorithm based on the space-filling curve (SFC), which is widely used in LMR, caused a costly halo data communication which became a bottleneck of our aerodynamics simulation on the GPU-based supercomputers. Our tree cutting approach adopts a hybrid domain partitioning with the coarse structured block decomposition and the SFC partitioning in each block. This hybrid approach improved the locality and the topology of the partitioned sub-domains and reduced the amount of the halo communication to one-third of the original SFC approach. The code achieved speedup on 8 GPUs, and achieved
speedup at the performance of 2207 MLUPS (mega-lattice update per second) on 128 GPUs with strong scaling test.
Saito, Tatsuo; Kobayashi, Shinichi*; Zaitsu, Tomohisa*; Shimo, Michikuni*; Fumoto, Hiromichi*
Hoken Butsuri (Internet), 55(2), p.86 - 91, 2020/06
Safety cases for disposal of uranium bearing waste and NORM with uranium has not yet been fully developed in Japan, because of safety assessment of extraordinary long timespan and uncertainty in unexpected incidents with uncompleted radon impact evaluation measures arising from uranium waste disposal facility in far future. Our task group of radiation protection for wastes with natural radioactive nuclides studied some safety cases with disposal of uranium bearing waste and NORM in terms of nuclides, U-235, U-238 and their progenies, and comprehensively discussed the current state of their disposal in comparison to the ideas of international organizations such as ICRP and IAEA. We developed our ideas for long term uncertainty and radon with the knowledge of experts in each related area of direction, repeating discussions, focusing out the orientation of each directions, and outlined the recommendations with our suggestions of solving important issues in the future to be addressed.
Kitamura, Naoto*; Nomura, Akira*; Saito, Akira*; Kobayashi, Hidekazu; Amamoto, Ippei; Takebe, Hiromichi*
Journal of the Ceramic Society of Japan, 126(11), p.948 - 951, 2018/11
Times Cited Count:6 Percentile:23.43(Materials Science, Ceramics)We studied compositional dependence of water durability of Zr(IV) containing FeO-FeO
-P
O
glasses systems, which can apply to immobilize nuclear waste of Zr isotope. Stabilized film with interference fringe on the surface improves better water durability after immersion tests for BaO and ZrO
coexisting glasses without fracture. On the other hand, microcrystalline ZrP
O
was detected in the glass matrix when more than 1 mol% of ZrO
incorporated. The effect of impregnated ZrP
O
crystal on the structure was discussed based on the phosphate structure analyzed by Raman spectra. Formation of Q
and Q
units, which contribute to water durability in the glass, are due to preferential precipitation of ZrP
O
crystal.
Amamoto, Ippei; Kobayashi, Hidekazu; Kitamura, Naoto*; Takebe, Hiromichi*; Mitamura, Naoki*; Tsuzuki, Tatsuya*; Fukayama, Daigen*; Nagano, Yuichi*; Jantzen, T.*; Hack, K.*
Journal of Nuclear Science and Technology, 53(10), p.1467 - 1475, 2016/10
Times Cited Count:5 Percentile:39.72(Nuclear Science & Technology)The iron phosphate glass (IPG) medium is known to be a high-efficiency glass medium, therefore we try to evaluate its applicability to immobilize sludge bearing radioactive nuclides arising from treatment of contaminated water at the stricken Fukushima Daiichi Nuclear Power Plant. For this study, many physical and chemical properties of target materials are necessary to evaluate the behaviours of IPG medium and its waste forms. Inevitably, it will entail the need for many and varied types of experiments to be carried out under high temperature. It is therefore rational to apply appropriate theoretical analysis first so as to reduce the number of experimental run. For this reason, some necessary thermodynamic values for theoretical analysis were estimated by CALPHAD approach followed by making up the calculated phase diagrams. By comparison with experimental results, they were found to be reliable for evaluating the behaviours of IPG medium and its waste forms.
Ito, Hiromichi*; Ota, Katsu; Kawahara, Hirotaka; Kobayashi, Tetsuhiko; Takamatsu, Misao; Nagai, Akinori
JAEA-Technology 2016-008, 87 Pages, 2016/05
In the experimental fast reactor Joyo, as a part of the restoration work of a partial dysfunction of fuel handling, the replacement of the upper core structure (UCS) was started from March 2014, and was completed in December 2014. In the jack-up test, the UCS was jacked-up to 1000 mm without significant sodium shearing resistance and interference. In the replacement of the UCS, a procedure was prepared with the use of wire-jack equipment assuming the interference. As a result, with the procedure and wire-jack were effectively functioned, the work was successfully completed.
Takamatsu, Misao; Kawahara, Hirotaka; Ito, Hiromichi; Ushiki, Hiroshi; Suzuki, Nobuhiro; Sasaki, Jun; Ota, Katsu; Okuda, Eiji; Kobayashi, Tetsuhiko; Nagai, Akinori; et al.
Nihon Genshiryoku Gakkai Wabun Rombunshi, 15(1), p.32 - 42, 2016/03
In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of "MARICO-2" (material testing rig with temperature control) had been broken and bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). This paper describes the results of the in-vessel repair techniques for UCS replacement, which are developed in Joyo. UCS replacement was successfully completed in 2014. In-vessel repair techniques for sodium cooled fast reactors (SFRs) are important in confirming its safety and integrity. In order to secure the reliability of these techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. The experience and knowledge gained in UCS replacement provides valuable insights into further improvements for In-vessel repair techniques in SFRs.
Ito, Hiromichi; Suzuki, Nobuhiro; Kobayashi, Tetsuhiko; Kawahara, Hirotaka; Nagai, Akinori; Sakao, Ryuta*; Murata, Chotaro*; Tanaka, Junya*; Matsusaka, Yasunori*; Tatsuno, Takahiro*
Proceedings of 2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) (CD-ROM), p.1058 - 1067, 2015/05
In the experimental fast reactor Joyo (Sodium-cooled Fast Reactor (SFR)), it was confirmed that the top of the irradiation test sub-assembly had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). There is a risk of deformation of the UCS and guide sleeve (GS) caused by interference between them unless inclination is controlled precisely. To mitigate the risk, special jack-up equipment for applying three-point suspension was developed. The existing damaged UCS (ed-UCS) jack-up test using the jack-up equipment was conducted on May 7, 2014. As a result of this test, it was confirmed that the ed-UCS could be successfully jacked-up to 1000 mm without consequent overload. The experience and knowledge gained in the ed-UCS jack-up test provides valuable insights and prospects not only for UCS replacement but also for further improving and verifying repair techniques in SFRs.
Kobayashi, Hidekazu; Amamoto, Ippei; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto*; Takebe, Hiromichi*; Mitamura, Naoki*; Tsuzuki, Tatsuya*
Proceedings of 15th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM 2013) (CD-ROM), 6 Pages, 2013/09
no abstracts in English
Amamoto, Ippei; Kobayashi, Hidekazu; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto*; Takebe, Hiromichi*; Mitamura, Naoki*; Tsuzuki, Tatsuya*
Proceedings of 15th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM 2013) (CD-ROM), 8 Pages, 2013/09
The great amount of water used for cooling the stricken power reactors at Fukushima Dai-ichi has resulted in accumulation of "remaining water". As the remaining water is subsequently contaminated by FPs, etc., it is necessary to decontaminate it in order to reduce the volume of liquid radioactive waste and to reuse it again for cooling the reactors. Various techniques are being applied to remove FP, etc. and to make stable waste forms. One of the methods using the iron phosphate glass as a medium is being developed to stabilize the strontium-bearing sludge whose main component is BaSO. From the results hitherto, the iron phosphate glass is regarded as a potential medium for the target sludge.
Shibata, Kaoru*; Takahashi, Nobuaki; Yamada, Takeshi*; Kamazawa, Kazuya*; Kawakita, Yukinobu; Nakajima, Kenji; Kambara, Wataru; Inamura, Yasuhiro; Nakatani, Takeshi; Aizawa, Kazuya; et al.
no journal, ,
no abstracts in English
Kobayashi, Hidekazu; Amamoto, Ippei; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto*; Takebe, Hiromichi*; Mitamura, Naoki*; Tsuzuki, Tatsuya*
no journal, ,
no abstracts in English
Kitamura, Naoto*; Takebe, Hiromichi*; Amamoto, Ippei; Kobayashi, Hidekazu; Tsuzuki, Tatsuya*
no journal, ,
no abstracts in English
Nomura, Akira*; Kitamura, Naoto*; Saito, Akira*; Sakamoto, Tatsuaki*; Takebe, Hiromichi*; Kobayashi, Hidekazu; Amamoto, Ippei; Nakamura, Hiroki*; Mitamura, Naoki*; Tsuzuki, Tatsuya*
no journal, ,
no abstracts in English
Hasegawa, Yuta; Aoki, Takayuki*; Kobayashi, Hiromichi*; Idomura, Yasuhiro; Onodera, Naoyuki
no journal, ,
We developed a block-structured static adaptive mesh refinement (AMR) CFD code for the aerodynamics simulation using the lattice Boltzmann method on GPU supercomputers. The data structure of AMR was based on the forest-of-octrees, and the domain partitioning algorithm was based on space-filling curves (SFCs). To reduce the halo data communication, we introduced the tree cutting approach, which divided the global domains with a few octrees into small sub-domains with many octrees, leading to a hierarchical domain partitioning approach with the coarse structured block and the fine SFC partitioning in each block. The tree cutting improved the locality of the sub-divided domain, and reduced both the amount of communication data and the number of connections of the halo communication. In the strong scaling test on the Tesla V100 GPU supercomputer, the tree cutting approach showed 1.82 speedup at the performance of 2207 MLUPS (mega-lattice update per second) on 128 GPUs.
Kobayashi, Hidekazu; Amamoto, Ippei; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto*; Takebe, Hiromichi*; Mitamura, Naoki*; Tsuzuki, Tatsuya*
no journal, ,
no abstracts in English
Amamoto, Ippei; Kobayashi, Hidekazu; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto*; Takebe, Hiromichi*; Mitamura, Naoki*; Tsuzuki, Tatsuya*; Fukayama, Daigen*; Nagano, Yuichi*; et al.
no journal, ,
no abstracts in English
Amamoto, Ippei; Kobayashi, Hidekazu; Kitamura, Naoto*; Takebe, Hiromichi*; Mitamura, Naoki*; Tsuzuki, Tatsuya*
no journal, ,
The immobilization method by iron phosphate glass (IPG) medium is one of the candidate techniques for manufacturing waste forms of sludge arising from the treatment of contaminated water at the stricken Fukushima Dai-ichi Nuclear Power Plant. In this paper, some thermodynamic values for the theoretical analysis of vitrification were estimated to make up the calculated phase diagrams. These calculated phase diagrams were then compared with experimental results.
Takebe, Hiromichi*; Kitamura, Naoto*; Amamoto, Ippei; Kobayashi, Hidekazu; Mitamura, Naoki*; Tsuzuki, Tatsuya*
no journal, ,
The great amount of water used for cooling the stricken power reactors at Fukushima Dai-ichi following the earthquake and tsunami on March 11, 2011 has resulted in the accumulation of the remaining water. The water is subsequently contaminated by fission products and some other radioactive substances. The initial treatment to remove the radioactive substances from the cooling water again produced a secondary radioactive waste, the sludge. Iron phosphate glass powder/frit and main component of raw materials for simulated sludge, e.g., barium sulfate and potassium nickel ferrocyanide with various concentrations, were mixed for melting batch. The temperature required for the formation of homogeneous melt was determined by the direct observation of sample decomposition and melting processes on the thermocouple filament through a microscope. The mixtures for bulk glasses were melted in air using platinum crucibles. The quenched glass samples consisted mainly of oxide constituents due to the decomposition of the sludge components during heating and melting processes. Characteristic temperatures of glass transition, Tg, and onset of crystallization, Tx, was determined by differential thermal analysis. Thermal stability against crystallization for the glass samples was evaluated by the temperature difference between Tx and Tg. Water durability was determined by the weight change per a specific surface area after immersion test in hot water at 120C for 72 hours based on MCC-2 static leaching method. Phosphate network species and chemical bonding were characterized by Raman spectroscopy. Glass composition melted with the stimulated sludge components is optimized in terms of both thermal stability and water durability with the characterization of O/P molar ratio.
Kitamura, Naoto*; Saito, Akira*; Takebe, Hiromichi*; Amamoto, Ippei; Kobayashi, Hidekazu; Tsuzuki, Tatsuya*; Mitamura, Naoki*
no journal, ,
no abstracts in English