Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sakuma, Kazuyuki; Hayashi, Seiji*; Yoshimura, Kazuya; Kurikami, Hiroshi; Malins, A.; Funaki, Hironori; Tsuji, Hideki*; Kobayashi, Takamaru*; Kitamura, Akihiro; Iijima, Kazuki
Water Resources Research, 58(8), p.e2021WR031181_1 - e2021WR031181_16, 2022/08
Times Cited Count:0 Percentile:0.06(Environmental Sciences)Sakuma, Kazuyuki; Machida, Masahiko; Kurikami, Hiroshi; Iwata, Ayako; Yamada, Susumu; Iijima, Kazuki
Science of the Total Environment, 806(3), p.151344_1 - 151344_8, 2022/02
Times Cited Count:1 Percentile:14.15(Environmental Sciences)Hashimoto, Shoji*; Tanaka, Taku*; Komatsu, Masabumi*; Gonze, M.-A.*; Sakashita, Wataru*; Kurikami, Hiroshi; Nishina, Kazuya*; Ota, Masakazu; Ohashi, Shinta*; Calmon, P.*; et al.
Journal of Environmental Radioactivity, 238-239, p.106721_1 - 106721_10, 2021/11
Times Cited Count:3 Percentile:40.73(Environmental Sciences)This study was aimed at analysing performance of models for radiocesium migration mainly in evergreen coniferous forest in Fukushima, by inter-comparison between models of several research teams. The exercise included two scenarios of countermeasures against the contamination, namely removal of soil surface litter and forest renewal, and a specific konara oak forest scenario in addition to the evergreen forest scenario. All the models reproduced trend of time evolution of radiocesium inventories and concentrations in each of the components in forest such as leaf and organic soil layer. However, the variations between models enlarged in long-term predictions over 50 years after the fallout, meaning continuous field monitoring and model verification/validation is necessary.
Saegusa, Hiromitsu*; Funaki, Hironori; Kurikami, Hiroshi; Sakamoto, Yoshiaki; Tokizawa, Takayuki*
Insights Concerning the Fukushima Daiichi Nuclear Accident, Vol.4; Endeavors by Scientists, p.170 - 187, 2021/10
Removed contaminants including soil, grass and trees are to be stored safely at temporary storage facilities for several years, after which they will be transferred to a planned interim storage facility. The decontamination pilot project was carried out in both the restricted and planned evacuation areas in order to assess decontamination methods and demonstrate measures for radiation protection of workers. Fourteen temporary storage facilities of different technical specifications were designed and constructed under various topographic conditions and land use. In order to support the design, construction and monitoring of temporary storage facilities for removed contaminants during the full-scale decontamination within the prefecture of Fukushima, technical know-how obtained during the decontamination pilot project has been identified and summarized in this paper.
Sanada, Yukihisa; Kurikami, Hiroshi; Funaki, Hironori; Yoshimura, Kazuya; Abe, Tomohisa; Ishida, Mutsushi*; Tanimori, Soichiro*; Sato, Rina
Nihon Genshiryoku Gakkai Wabun Rombunshi, 20(2), p.62 - 73, 2021/06
Japanese government starts to consider radiation protection in the "specific reconstruction reproduction base area" of which evacuation order will be lifted by 2023. It is essential to grab the present situations of radiation contamination and evaluate exposure dose in the area to realize the plan. Many surveys have evaluated the distributions of air dose rate and exposure dose has been estimated based on the results since the Fukushima Daiichi Nuclear Power Plant accident. Nevertheless, more detailed information on exposure is needed for the areas because its radiation level is relatively high. That is also to help make prudent evaluation plan. This study aimed to evaluate the detailed contamination situation there and estimate exposure dose with considering areal circumstances. Investigations were carried out for (1) airborne survey of air dose rate using an unmanned helicopter (2) evaluation of airborne radiocesium and (3) estimation of external/internal effective doses for typical activity patterns assumed.
Kurikami, Hiroshi
Impacts of Fukushima Nuclear Accident on Freshwater Environments, p.227 - 247, 2021/00
The relationship between radiocesium migration in forest and fish contamination was analyzed by using a model and environmental monitoring data. As the result, it was estimated that radiocesium sources in forest transferred to fish were changing with time. In the first several years after the accident, the main sources were leaves that fell directly into rivers and litter layer of the forest floor, which led the fast decrease of radiocesium concentration in fish. After the period, the main source was switched to the organic soil underlying the litter layer.
Nagao, Fumiya; Niizato, Tadafumi; Sasaki, Yoshito; Ito, Satomi; Watanabe, Takayoshi; Dohi, Terumi; Nakanishi, Takahiro; Sakuma, Kazuyuki; Hagiwara, Hiroki; Funaki, Hironori; et al.
JAEA-Research 2020-007, 249 Pages, 2020/10
The accident of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. occurred due to the Great East Japan Earthquake, Sanriku offshore earthquake, of 9.0 magnitude and the accompanying tsunami. As a result, large amount of radioactive materials was released into the environment. Under these circumstances, Japan Atomic Energy Agency (JAEA) has been conducting "Long-term Assessment of Transport of Radioactive Contaminants in the Environment of Fukushima" concerning radioactive materials released in environment, especially migration behavior of radioactive cesium since November 2012. This report is a summary of the research results that have been obtained in environmental dynamics research conducted by JAEA in Fukushima Prefecture.
Yamada, Susumu; Machida, Masahiko; Kurikami, Hiroshi
Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.140 - 146, 2020/10
no abstracts in English
Yoshimura, Kazuya; Watanabe, Takayoshi; Kurikami, Hiroshi
Journal of Environmental Radioactivity, 217, p.106213_1 - 106213_6, 2020/06
Times Cited Count:4 Percentile:29.75(Environmental Sciences)Kim, M.; Malins, A.; Yoshimura, Kazuya; Sakuma, Kazuyuki; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko; Hasegawa, Yukihiro*; Yanagi, Hideaki*
Journal of Environmental Radioactivity, 210, p.105803_1 - 105803_10, 2019/12
Times Cited Count:4 Percentile:22.05(Environmental Sciences)To improve the accuracy of simulations for air dose rates over fallout contaminated areas, the distribution of the radionuclides within the environment should be modelled realistically, e.g. considering differences in radioactivity levels between agricultural land, urban surfaces, and forest compartments. Moreover simulations should model the shielding of rays by buildings, trees and land topography. Here we outline a system for generating three dimensional models of urban and rural areas in Fukushima Prefecture. The
Cs and
Cs radioactivity distribution can be set flexibly across the different components of the model. The models incorporate realistic representations of local buildings, based on nine common Japanese designs, individual conifer and broadleaf trees, and the topography of the land surface. Models are generated from Digital Elevation Model (DEM) and Digital Surface Model (DSM) datasets, and refined by users assisted with ortho-photographs of target sites. Completed models are exported from the system in a format suitable for the Particle and Heavy Ion Transport code System (PHITS) for the calculation of air dose rates and other radiological quantities. The system is demonstrated by modelling a suburban area 4 km from the Fukushima Daiichi Nuclear Power Plant that has yet to be decontaminated. Air dose rates calculated in PHITS were correlated with measurements taken across the site in a car-borne survey.
Kurikami, Hiroshi; Sakuma, Kazuyuki; Malins, A.; Sasaki, Yoshito; Niizato, Tadafumi
Journal of Environmental Radioactivity, 208-209, p.106005_1 - 106005_11, 2019/11
Times Cited Count:12 Percentile:53.33(Environmental Sciences)To assess the uptake of Cs-137 (Cs) by freshwater fish, we developed a compartment model for the migration of
Cs on the catchment scale from forests to river water. We modelled a generic forest catchment with Fukushima-like parameters to ascertain the importance of export pathways of
Cs from forests to river water for the uptake of
Cs by freshwater fish. The results suggest that the decreasing trend of
Cs in river water and freshwater fish was due to combination of the decreasing trend in the forest leaves/needles and litter compartments, and the increasing trend in soil. The
Cs concentrations within these forest compartments plateau at around ten years after the fallout due to
Cs circulation in forests reaching an equilibrium state.
Sakuma, Kazuyuki; Nakanishi, Takahiro; Yoshimura, Kazuya; Kurikami, Hiroshi; Namba, Kenji*; Zheleznyak, M.*
Journal of Environmental Radioactivity, 208-209, p.106041_1 - 106041_12, 2019/11
Times Cited Count:17 Percentile:67.39(Environmental Sciences)We developed a simple model to evaluate and predict Cs discharge from catchment using tank model and L-Q equation. Using this model,
Cs discharge and discharge ratio from Abukuma River and 13 other rivers in Fukushima coastal region were estimated from immediately after Fukushima accident to 2017. Cesium-137 discharge ratio to the deposition amount in catchment through Abukuma River and 13 other rivers in Fukushima coastal region during about initial six months were estimated to be 18 TBq (3.1%) and 11 TBq (0.8%), respectively. These values were 1-2 orders of magnitude larger than the previous study observed after June 2011, indicating that initial
Cs discharge from catchment through rivers was a significant. However it was founded that an impact on the ocean derived from initial
Cs discharge through river can be limited because
Cs discharge from Abukuma River and 13 other rivers in Fukushima coastal region (29 TBq) was two orders of magnitude smaller than the direct release from FDNPP into the ocean (3.5 PBq) and from atmospheric deposition into the ocean (7.6 PBq).
Nagao, Fumiya; Niizato, Tadafumi; Sasaki, Yoshito; Ito, Satomi; Watanabe, Takayoshi; Dohi, Terumi; Nakanishi, Takahiro; Sakuma, Kazuyuki; Hagiwara, Hiroki; Funaki, Hironori; et al.
JAEA-Research 2019-002, 235 Pages, 2019/08
The accident of the Fukushima Daiichi Nuclear Power Station (hereinafter referred to 1F), Tokyo Electric Power Company Holdings, Inc. occurred due to the Great East Japan Earthquake, Sanriku offshore earthquake, of 9.0 magnitude and the accompanying tsunami. As a result, large amount of radioactive materials was released into the environment. Under these circumstances, JAEA has been conducting Long-term Environmental Dynamics Research concerning radioactive materials released in environment, especially migration behavior of radioactive cesium since November 2012. This report is a summary of the research results that have been obtained in environmental dynamics research conducted by JAEA in Fukushima Prefecture.
Liu, X.; Machida, Masahiko; Kurikami, Hiroshi; Kitamura, Akihiro
Journal of Environmental Radioactivity, 203, p.135 - 146, 2019/07
Times Cited Count:2 Percentile:11.05(Environmental Sciences)In order to simulate the long-term migration and distribution of radiocesium after the Fukushima accident, a numerical model, Soil and Cesium Transport (SACT) based on universal soil loss equation (USLE), has been developed in previous studies. Although the SACT model's results on radiocesium discharge in 2011 are in reasonable agreement with field measurements, it fails to capture the sharp decrease of radiocesium flux in subsequent years, especially in the case of Abukuma River. We therefore have improved SACT by implementing the vertical migration and fixation of radiocesium in soil. For validation purpose, the annual average radiocesium concentration in sediments discharged from Abukuma River has been evaluated from measurement data. New model achieved much better agreement with the measurement results without parameter tuning.
Malins, A.; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko
Remediation Measures for Radioactively Contaminated Areas, p.259 - 272, 2019/00
Sakuma, Kazuyuki; Niizato, Tadafumi; Kim, M.; Malins, A.; Machida, Masahiko; Yoshimura, Kazuya; Kurikami, Hiroshi; Kitamura, Akihiro; Hosomi, Masaaki*
Kankyo Hoshano Josen Gakkai-Shi, 6(3), p.145 - 152, 2018/09
We simulated air dose rates using PHITS to consider how the partitioning of radiocesium between the forest canopy, litter layer and soil layer affected air dose rates by perturbing the radiocesium source distribution between different simulations. Transferring radiocesium from the canopy to the litter layer did not affect air dose rates at 1 m above the ground when setting up the simulation with a radiocesium distribution measured in October 2015. This is because there was almost no radiocesium in the canopy at that time. However air dose rates tended to be high near the canopy, and above the canopy up to 200 m altitude, when the simulations were initiated using source distribution data applicable for August-September 2011, due to the larger amount of radiocesium in the canopy at that time. Transferring the radiocesium from the canopy to the litter layer in this case was associated with a three times increase in the air dose rate at 1 m, as the average distance between radiocesium in the forest and 1 m above the ground was shortened. In both cases radiocesium transfer from the litter layer to the underlying soil was associated with a one third to 50% reduction in air dose rates at 1 m, due to the self-shielding effect of soil.
Sakuma, Kazuyuki; Tsuji, Hideki*; Hayashi, Seiji*; Funaki, Hironori; Malins, A.; Yoshimura, Kazuya; Kurikami, Hiroshi; Kitamura, Akihiro; Iijima, Kazuki; Hosomi, Masaaki*
Journal of Environmental Radioactivity, 184-185, p.53 - 62, 2018/04
Times Cited Count:1 Percentile:4.71(Environmental Sciences)A study is presented on the applicability of the distribution coefficient () absorption/desorption model to simulate dissolved
Cs concentrations in Fukushima river water. The simulation results were in good agreement with the observations on water and suspended sediment fluxes, and on particulate bound
Cs concentrations under both ambient and high flow conditions. By contrast the measured concentrations of dissolved
Cs in the river water were much harder to reproduce with the simulations. By tuning the
values for large particles, it was possible to reproduce the mean dissolved
Cs concentrations during base flow periods (observation: 0.32 Bq/L, simulation: 0.36 Bq/L). However neither the seasonal variability in the base flow dissolved
Cs concentrations (0.14-0.53 Bq/L), nor the peaks in concentration that occurred during storms (0.18-0.88 Bq/L, mean: 0.55 Bq/L), could be reproduced with realistic simulation parameters.
Sakuma, Kazuyuki; Malins, A.; Funaki, Hironori; Kurikami, Hiroshi; Niizato, Tadafumi; Nakanishi, Takahiro; Mori, Koji*; Tada, Kazuhiro*; Kobayashi, Takamaru*; Kitamura, Akihiro; et al.
Journal of Environmental Radioactivity, 182, p.44 - 51, 2018/02
Times Cited Count:10 Percentile:41.29(Environmental Sciences)The Oginosawa River catchment lies 15 km south-west of the Fukushima Dai-ichi nuclear plant. The General-purpose Terrestrial Fluid-flow Simulator (GETFLOWS) code was used to study sediment and Cs redistribution within the catchment. Cesium-137 input to watercourses came predominantly from land adjacent to river channels and forest gullies. Forested areas far from the channels only made a minor contribution to
Cs input to watercourses, total erosion of between 0.001-0.1 mm from May 2011 to December 2015. The 2.3-6.9% y
decrease in the amount of
Cs in forest topsoil over the study period can be explained by radioactive decay (approximately 2.3% y
), along with a migration downwards into subsoil and a small amount of export. The amount of
Cs available for release from land adjacent to rivers is expected to be lower in future than compared to this study period, as the simulations indicate a high depletion of inventory from these areas.
Tsuruta, Tadahiko; Niizato, Tadafumi; Nakanishi, Takahiro; Dohi, Terumi; Nakama, Shigeo; Funaki, Hironori; Misono, Toshiharu; Oyama, Takuya; Kurikami, Hiroshi; Hayashi, Seiji*; et al.
JAEA-Review 2017-018, 86 Pages, 2017/10
Since the accidents at Fukushima Daiichi Nuclear Power Plant following the Tohoku Region Pacific Coast Earthquake on March 11th, 2011, Fukushima Environmental Safety Center has carried out research on natural mobilization of radionuclide (especially radiocesium) and future forecast from forest to water system and surrounding residential areas. The report summarizes the latest results that have been accumulated from each study field, of our agency together with the other related research organizations. The contents of the report is to be used as evidence-based information for the QA-styled pages in the website of JAEA Sector of Fukushima Research and Development at the time of next renewal.
Takeishi, Minoru; Shibamichi, Masaru; Malins, A.; Kurikami, Hiroshi; Murakami, Mitsuhiro*; Saegusa, Jun; Yoneya, Masayuki
Journal of Environmental Radioactivity, 177, p.1 - 12, 2017/10
By convention radiation measurements from vehicle-borne surveys are converted to the dose rate at 1 m above the ground in the absence of the vehicle. To improve the accuracy of the converted results from vehicle-borne surveys, we investigated combining measurements from two detectors mounted on the vehicle at different heights above the ground. A dual-detector setup was added to a JAEA monitoring car and compared against hand-held survey meter measurements in Fukushima Prefecture. The dose rates obtained by combining measurements from two detectors were within 20% of the hand-held reference measurements. The combined results from the two detectors were more accurate than those from either the roof-mounted detector, or the detector inside the vehicle, taken alone. When radiocesium is deficient on a road compared to the adjacent land, mounting detectors high on vehicles yields dose rates closer to the values adjacent to the road. We also investigated mounting heights for vehicle-borne detectors using Monte Carlo
-ray simulations.