検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 6 件中 1件目~6件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Microscopic origin of the spin-reorientation transition in the kagome topological magnet TbMn$$_{6}$$Sn$$_{6}$$

Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; 梶本 亮一; 池内 和彦*; Deng, G.*; et al.

Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01

 被引用回数:0 パーセンタイル:0.01(Materials Science, Multidisciplinary)

TbMn$$_{6}$$Sn$$_{6}$$ is a correlated topological magnet with a Mn-based kagome lattice, in which a Chern gap opens at the Dirac point at low temperatures. The magnetic moment direction of the ferrimagnetic order changes from in the kagome plane to the out-of-plane upon cooling, which is essential for generating the Chern gap, but the underlying mechanism for the spin reorientation remains elusive. Here, we investigate the spin-reorientation transition in TbMn$$_{6}$$Sn$$_{6}$$ using neutron scattering. We provide direct evidence for the spin-reorientation transition and unveil the coexistence of two Tb modes at 200 K. To account for these results, we put forward a model based on SU(N) spin-wave theory, in which there is a temperature evolution of the ground state Tb $$4f$$ orbitals, driven by the crystalline electric field, single-ion anisotropy, and exchange interactions between Tb and Mn ions. Our findings shed light on the complex magnetism of TbMn$$_{6}$$Sn$$_{6}$$, despite its relatively simple ground state magnetic structure, and provide insights into the mechanisms for tuning magnetic topological materials.

論文

Valley-selective phonon-magnon scattering in magnetoelastic superlattices

Liao, L.*; Puebla, J.*; 山本 慧; Kim, J.*; 前川 禎通*; Hwang, Y.*; Ba, Y.*; 大谷 義近*

Physical Review Letters, 131(17), p.176701_1 - 176701_6, 2023/10

 被引用回数:2 パーセンタイル:0(Physics, Multidisciplinary)

Phonons and magnons are engineered by periodic potential landscapes in phononic and magnonic crystals, and their combined studies may enable valley phonon transport tunable by the magnetic field. Through nonreciprocal surface acoustic wave transmission, we demonstrate valley-selective phonon-magnon scattering in magnetoelastic superlattices. The lattice symmetry and the out-of-plane magnetization component control the sign of nonreciprocity. The phonons in the valleys play a crucial role in generating nonreciprocal transmission by inducing helical strains that couple with the magnons. The transmission spectra show a nonreciprocity peak near a transmission gap, matching the phononic band structure. Our results open the way for manipulating valley phonon transport through periodically varying magnon-phonon coupling.

論文

Direct observation of topological magnon polarons in a multiferroic material

Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; 梶本 亮一; et al.

Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09

 被引用回数:2 パーセンタイル:57.37(Multidisciplinary Sciences)

Magnon polarons are novel elementary excitations possessing hybrid magnonic and phononic signatures, and are responsible for many exotic spintronic and magnonic phenomena. Despite long-term sustained experimental efforts in chasing for magnon polarons, direct spectroscopic evidence of their existence is hardly observed. Here, we report the direct observation of magnon polarons using neutron spectroscopy on a multiferroic Fe$$_{2}$$Mo$$_{3}$$O$$_{8}$$ possessing strong magnon-phonon coupling. Specifically, below the magnetic ordering temperature, a gap opens at the nominal intersection of the original magnon and phonon bands, leading to two separated magnon-polaron bands. Each of the bands undergoes mixing, interconverting and reversing between its magnonic and phononic components. We attribute the formation of magnon polarons to the strong magnon-phonon coupling induced by Dzyaloshinskii-Moriya interaction. Intriguingly, we find that the band-inverted magnon polarons are topologically nontrivial. These results uncover exotic elementary excitations arising from the magnon-phonon coupling, and offer a new route to topological states by considering hybridizations between different types of fundamental excitations.

論文

A Comparative CFD exercise on bubble hydrodynamics using Euler-Euler and interface tracking approaches

Dehbi, A.*; Cheng, X.*; Liao, Y.*; 岡垣 百合亜; Pellegrini, M.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 15 Pages, 2022/03

Nuclear degraded cores produce fission product aerosols that may reach the environment if not removed by natural processes and/or filtering equipment. The transport paths of aerosols usually include transits through stagnant water pools. It is therefore essential to develop computational tools to predict the aerosols retention by water pools. Currently, this is mostly done with 1-D lumped-parameter codes that are too simplistic to capture the physics. It is hence worthwhile to attempt the CFD approach, which has recently become reasonably mature to address bubble hydrodynamics in low momentum two-phase flows. In this first comparative exercise, we restrict the investigation to a hypothetical parallelepiped water pool (2$$times$$2$$times$$8 cm$$^{3}$$) into which air is injected through a circular 4 mm ID orifice at low velocity of 0.2 m/s. We present predictions of the gas phase dynamics (void and velocity profiles) for both Euler-Euler and Interface Tracking (IT, Volume-of-Fluid (VOF)) methodologies. In addition, we compare bubble shape, volume and detachment frequency from various IT simulation codes (CFX, Fluent, Star-CCM+, OpenFOAM). Reasonable agreement is found between IT simulations near the injector, but discrepancies increase as one moves towards the free surface. The disagreement between the Euler-Euler and IT results is substantial throughout the domain. Future studies will consist of validation exercises against experimental data to highlight potential model deficiencies and point to ways of remedying them.

論文

Evidence for strong correlations at finite temperatures in the dimerized magnet Na$$_{2}$$Cu$$_{2}$$TeO$$_{6}$$

Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Cai, Z.*; Wang, W.*; Huang, Z.*; Ma, Z.*; Liao, J.*; Zhao, X.*; 梶本 亮一; et al.

Physical Review B, 104(22), p.224430_1 - 224430_8, 2021/12

 被引用回数:1 パーセンタイル:7.51(Materials Science, Multidisciplinary)

Dimerized magnets forming alternating Heisenberg chains exhibit quantum coherence and entanglement and thus can find potential applications in quantum information and computation. However, magnetic systems typically undergo thermal decoherence at finite temperatures. Here, we show inelastic neutron scattering results on an alternating antiferromagnetic-ferromagnetic chain compound Na$$_{2}$$Cu$$_{2}$$TeO$$_{6}$$ that the excited quasiparticles can counter thermal decoherence and maintain strong correlations at elevated temperatures. At low temperatures, we observe clear dispersive singlet-triplet excitations arising from the dimers formed along the crystalline $$b$$-axis. The excitation gap is of $$sim$$18 meV and the bandwidth is about half of the gap. The band top energy has a weak modulation along the [100] direction, indicative of a small interchain coupling. The gap increases while the bandwidth decreases with increasing temperature, leading to a strong reduction in the available phase space for the triplons. As a result, the Lorentzian-type energy broadening becomes highly asymmetric as the temperature is raised. These results are associated with a strongly correlated state resulting from hard-core constraint and quasiparticle interactions. We consider these results to be not only evidence for strong correlations at finite temperatures in Na$$_{2}$$Cu$$_{2}$$TeO$$_{6}$$, but also for the universality of the strongly correlated state in a broad range of quantum magnetic systems.

論文

Phase transitions and polymerization of C$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$ cocrystal under extreme conditions

Wang, Y.*; Wang, L.*; Zheng, H.*; Li, K.*; Andrzejewski, M.*; 服部 高典; 佐野 亜沙美; Katrusiak, A.*; Meng, Y.*; Liao, F.*; et al.

Journal of Physical Chemistry C, 120(51), p.29510 - 29519, 2016/12

 被引用回数:23 パーセンタイル:60.41(Chemistry, Physical)

芳香族分子を加圧重合(PIP)すると飽和炭素ナノ構造を作ることができる。強く$$pi$$-$$pi$$結合した積層ユニットとしてC$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$不可物は超分子化学に広く適用され、PIPのよい事前構造体を提供する。本研究では、高圧下におけるC$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$共結晶の構造変化とその後のPIPプロセスを調べた。ラマン分光、IR、シンクロトロンX線および中性子回折によって、4つの新しい分子複合体相V、VI、VIIおよびVIIIが同定され、特徴づけられた。V相は、低温で観察される相とは異なり、傾斜した柱状構造を有する。VI相およびVII相は、V相と類似の構造を有する。VIII相は、触媒なしで25GPa以上で不可逆的に重合し、sp$$^{3}$$(CH/F)$$_{n}$$物質を生成する。$$pi$$-$$pi$$の相互作用は、0.5GPa以下でも依然として支配的であるが、さらに高圧下では過度に進行する。この現象は、超分子相転移および重合プロセスを議論するために重要である。

6 件中 1件目~6件目を表示
  • 1