Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; Kofu, Maiko*; Nirei, Masami; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
Times Cited Count:5 Percentile:72.42(Multidisciplinary Sciences)Yang, Q.*; Yang, X.*; Wang, Y.*; Fei, Y.*; Li, F.*; Zheng, H.*; Li, K.*; Han, Y.*; Hattori, Takanori; Zhu, P.*; et al.
Nature Communications (Internet), 15, p.7778_1 - 7778_9, 2024/09
Times Cited Count:4 Percentile:72.72(Multidisciplinary Sciences)Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via hydrogen bonding cooperativity effect to realize the mixture of n--
transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecule, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.
Gu, Y. Q.*; Gu, Y. M.*; Liu, F.*; Kawamura, Seiko; Murai, Naoki; Zhao, J.*
Physical Review Letters, 132(24), p.246702_1 - 246702_7, 2024/06
Times Cited Count:1 Percentile:0.00(Physics, Multidisciplinary)Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.
Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12
Times Cited Count:8 Percentile:84.50(Physics, Multidisciplinary)Hu, Q.*; Wang, Q. M.*; Zhang, T.*; Zhao, C.*; Iltaf, K. H.*; Liu, S. Q.*; Fukatsu, Yuta
Energy Reports (Internet), 9, p.3661 - 3682, 2023/12
Times Cited Count:10 Percentile:74.40(Energy & Fuels)Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:2 Percentile:27.27(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe
on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Ao, N.*; Zhang, H.*; Xu, H. H.*; Wu, S. C.*; Liu, D.*; Xu, P. G.; Su, Y. H.; Kang, Q. H.*; Kang, G. Z.*
Engineering Fracture Mechanics, 281, p.109166_1 - 109166_14, 2023/03
Times Cited Count:12 Percentile:88.61(Mechanics)Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12
Times Cited Count:20 Percentile:90.32(Multidisciplinary Sciences)Huang, H.*; Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Li, Z. H.*; Guo, C. Y.*; Barzakh, A. E.*; Van Duppen, P.*; Andel, B.*; et al.
Physics Letters B, 833, p.137345_1 - 137345_8, 2022/10
Times Cited Count:1 Percentile:19.87(Astronomy & Astrophysics)Liu, B.*; Feng, R.*; Busch, M.*; Wang, S.*; Wu, H.*; Liu, P.*; Gu, J.*; Bahadoran, A.*; Matsumura, Daiju; Tsuji, Takuya; et al.
ACS Nano, 16(9), p.14121 - 14133, 2022/09
Times Cited Count:89 Percentile:98.75(Chemistry, Multidisciplinary)Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; 37 of others*
Physical Review C, 106(2), p.024317_1 - 024317_11, 2022/08
Times Cited Count:4 Percentile:57.32(Physics, Nuclear)Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; Li, Z. H.*; Li, J. G.*; Guo, C. Y.*; 34 of others*
Physics Letters B, 829, p.137129_1 - 137129_7, 2022/06
Times Cited Count:6 Percentile:71.20(Astronomy & Astrophysics)Wu, C.*; Tanaka, Kazuya; Tani, Yukinori*; Bi, X.*; Liu, J.*; Yu, Q.*
Science of the Total Environment, 821, p.153265_1 - 153265_9, 2022/05
Times Cited Count:47 Percentile:96.83(Environmental Sciences)Microplastics (MPs) with different particle sizes were co-cultured with a model freshwater fungus, strain KR21-2, to form biofilms on their surface. We also determined the changes in surface physicochemical properties of the biofilm-covered MPs (BMPs) and the heavy metal adsorption capacity of the original MPs and BMPs. The results revealed that the biofilms improve the adsorption of heavy metals on MPs, and the particle size of MPs plays a crucial role in biofilm colonization and adsorption of heavy metals by BMPs.
Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:4 Percentile:24.65(Astronomy & Astrophysics)Kong, L.*; Gong, J.*; Hu, Q.*; Capitani, F.*; Celeste, A.*; Hattori, Takanori; Sano, Asami; Li, N.*; Yang, W.*; Liu, G.*; et al.
Advanced Functional Materials, 31(9), p.2009131_1 - 2009131_12, 2021/02
Times Cited Count:30 Percentile:82.95(Chemistry, Multidisciplinary)The soft nature of organic-inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. However, these soft materials meanwhile feature a general characteristic that even a very mild pressure will lead to detrimental lattice distortion and weaken the critical light-matter interaction, thereby triggering the performance degradation. Here, using the methylammonium lead iodide as a representative exploratory platform, we observed the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable.
Lai, W.-H.*; Wang, H.*; Zheng, L.*; Jiang, Q.*; Yan, Z.-C.*; Wang, L.*; Yoshikawa, Hirofumi*; Matsumura, Daiju; Sun, Q.*; Wang, Y.-X.*; et al.
Angewandte Chemie; International Edition, 59(49), p.22171 - 22178, 2020/12
Times Cited Count:99 Percentile:95.70(Chemistry, Multidisciplinary)Sun, M. D.*; Liu, Z.*; Huang, T. H.*; Zhang, W. Q.*; Andreyev, A. N.; Ding, B.*; Wang, J. G.*; Liu, X. Y.*; Lu, H. Y.*; Hou, D. S.*; et al.
Physics Letters B, 800, p.135096_1 - 135096_5, 2020/01
Times Cited Count:12 Percentile:75.39(Astronomy & Astrophysics)Tang, C.*; Song, Q.*; Chang, C.-Z.*; Xu, Y.*; Onuma, Yuichi; Matsuo, Mamoru*; Liu, Y.*; Yuan, W.*; Yao, Y.*; Moodera, J. S.*; et al.
Science Advances (Internet), 4(6), p.eaas8660_1 - eaas8660_6, 2018/06
Times Cited Count:34 Percentile:83.68(Multidisciplinary Sciences)Lin, J. Q.*; Liu, X.*; Blackburn, E.*; Wakimoto, Shuichi; Ding, H.*; Islam, Z.*; Sinha, S. K.*
Physical Review Letters, 120(19), p.197001_1 - 197001_6, 2018/05
Times Cited Count:3 Percentile:27.12(Physics, Multidisciplinary)The nanometer scale lattice deformation brought about by the dopants in the high temperature superconducting cuprate LaSr
CuO
was investigated by measuring the associated X-ray diffuse scattering around multiple Bragg peaks. Our results address the long-term concern of dopant introduced local lattice inhomogeneity, and show that the associated nanometer scale lattice deformation is marginal and cannot be responsible for the patched variation in the spectral gaps observed with scanning tunneling microscopy in the cuprates.
Yan, S. Q.*; Li, Z. H.*; Wang, Y. B.*; Nishio, Katsuhisa; Lugaro, M.*; Karakas, A. I.*; Makii, Hiroyuki; Mohr, P.*; Su, J.*; Li, Y. J.*; et al.
Astrophysical Journal, 848(2), p.98_1 - 98_8, 2017/10
Times Cited Count:6 Percentile:23.14(Astronomy & Astrophysics)