Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okada, Yuji; Magome, Hirokatsu; Matsui, Yoshinori
JAEA-Technology 2022-014, 113 Pages, 2022/09
Material irradiation test system had been newly installed in JMTR (Japan Materials Testing Reactor) with taking 5 years which was from 2008 through 2013. The aim of material irradiation test system is to conduct IASCC (Irradiation Assisted Stress Corrosion Cracking) evaluation study. This system is mainly consist of water control unit, which can simulate elevated temperature and pressure of the light water reactor environment in the reactor, and load control unit, which can perform the crack propagation examination under irradiation. This load control unit gives a load to CT (Compact Tension) specimen, and perform the crack propagation examination. The principle of loading to CT specimen is using pressure difference between pressure generated by high temperature and high pressure water by water control unit in capsule and pressure generated by load gas pressure supplied by helium gas cylinder in bellows installed in load control unit. In 2013, the commissioning of material irradiation test system was carried out for adjustment. During this commissioning, the correlation between the differential pressure in load control unit and the load was confirmed by using the test container connected to load control unit with load cell. From the results of commissioning, the problem, which the load change speeds at loading and unloading were different due to different pressure change speeds by the piping resistance performance in the periodic loading test in which load from minimum to maximum repeatedly applied, was confirmed. This report summarizes the problem of load change speed due to the piping resistance performance, which was confirmed in 2013, the improvement and performance test of load control unit for solving the problem described above, which were carried out from 2014 to 2015, and operating procedure.
Magome, Hirokatsu; Iimura, Koichi; Matsui, Yoshinori
JAEA-Testing 2020-008, 52 Pages, 2021/02
As to the removal of the hydraulic rabbit No.1 irradiation facility related to the decommissioning of JMTR, points to be noted for considering a removal plan and maintenance methods after the removal were studied based on the past experiences of removing the hydraulic rabbit No.2 irradiation facility. As results, it became clear that it was necessary to (1) add a shutoff valve and a closing flange to piping for preventing cooling water leakage, (2) prepare a drawing jig for inner tube, and (3) shorten the remaining piping to withstand earthquakes. In addition, regarding the management of equipment to be maintained after removal, the necessary management items for the removal methods of the three patterns of ground equipments were listed.
Magome, Hirokatsu; Iimura, Koichi; Matsui, Yoshinori
JAEA-Technology 2020-022, 32 Pages, 2021/02
Among the canal underwater equipment of HR-1, seismic evaluations of the canal side wall parts and the canal bottom surface parts were carried out for the insertion device, take-out device and decay tank. As a result, it was confirmed that the equipments have sufficient seismic resistances because the maximum stress of the canal side wall joint, the bolt portion of the canal bottom joint, and the fillet weld are within the allowable stress.
Magome, Hirokatsu; Okada, Yuji; Tomita, Kenji; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Hanawa, Hiroshi; Kanno, Masaru; Sakuta, Yoshiyuki
JAEA-Technology 2015-025, 100 Pages, 2015/09
In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. The material irradiation test facility is used for IASCC study, and that consists of mainly three equipments. This report is described performance operating test of the water environmental control facilities for IASCC study carried out 2013 fiscal year.
Magome, Hirokatsu; Okada, Yuji; Hanawa, Hiroshi; Sakuta, Yoshiyuki; Kanno, Masaru; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Shibata, Mitsunobu
JAEA-Technology 2014-023, 267 Pages, 2014/07
In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. This report summarizes manufacture and installation of the material irradiation test facility for IASCC research carried out from 2012 to 2014 in the follow-up report reported before (JAEA-Technology 2013-019).
Okada, Yuji; Magome, Hirokatsu; Hanawa, Hiroshi; Omi, Masao; Kanno, Masaru; Iida, Kazuhiro; Ando, Hitoshi; Shibata, Mitsunobu; Yonekawa, Akihisa; Ueda, Haruyasu
JAEA-Technology 2013-019, 236 Pages, 2013/10
In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material is advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. This material irradiation test facility and power ramping test facility for doing the neutron irradiation test of the fuel and material for light water reactors is scheduled to be manufactured and installed between the 2008 fiscal year and the 2012 fiscal year. This report summarizes manufacture and installation of the material irradiation test facility for IASCC research carried out from the 2008 fiscal year to the 2010 fiscal year.
Okada, Yuji; Magome, Hirokatsu; Iida, Kazuhiro; Hanawa, Hiroshi; Omi, Masao
UTNL-R-0483, p.10_4_1 - 10_4_10, 2013/03
In JAEA(Japan Atomic Energy Agency), about the irradiation embrittlement of the reactor pressure vessel and the stress corrosion cracking of reactor core composition apparatus concerning the long-term use of the light water reactor (BWR), in order to check the influence of the temperature, pressure, and water quality, etc on BWR condition. The water environmental control facility which performs irradiation assisted stress corrosion-cracking (IASCC) evaluation under BWR irradiation environment was fabricated in JMTR. (Japan Materials Testing Reactor). This report is described the outline of manufacture of the water environmental control facility for doing an irradiation test using the saturation temperature capsule after JMTR re-operation.
Takemoto, Noriyuki; Oto, Tsutomu; Magome, Hirokatsu; Izumo, Hironobu; Hori, Naohiko
JAEA-Technology 2012-011, 53 Pages, 2012/03
A simulator of irradiation test reactors has been developed since JFY 2010 for understanding reactor behavior and for upskilling in order to utilize for a nuclear human resource development (HRD) and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the one of the irradiation test reactors, the JMTR, and it simulates operating, irradiation tests and various kinds of accidents caused in the reactor and the irradiation facility. The development of the simulator is sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. The training of operation using the simulator will be started for the nuclear HRD from JFY 2012. This report summarizes the result of the conceptual design of the simulator in JFY 2010.
Takeuchi, Masaki; Magome, Hirokatsu; Komeda, Masao; Kawasaki, Kozo*
JAEA-Technology 2009-037, 28 Pages, 2010/03
Japan Research Reactor No.3 (JRR-3) has been providing Neutron Transmutation Doping Silicon (NTD-Si). Though the inverse method is employed for producing NTD-Si in JRR-3, it is possible to increase the production rate of NTD-Si by using the neutron filter method. As the result, the prospect that the neutron filter method was able to develop without changing a geometrical size of NTD-Si facility in JRR3 was obtained.
Motohashi, Jun; Takahashi, Hiroyuki; Magome, Hirokatsu; Sasajima, Fumio; Tokunaga, Okihiro*; Kawasaki, Kozo*; Onizawa, Koji*; Isshiki, Masahiko*
JAEA-Technology 2009-036, 50 Pages, 2009/07
JRR-3 and JRR-4 have been providing neutron-transmutation-doped silicon (NTD-Si) by using the silicon NTD process. We have been considering to introduce the neutron filter, which is made of high-purity-titanium, into uniform doping. Silicon carbide (SiC) semiconductors doped with NTD technology are considered suitable for high power devices with superior performances to conventional Si-based devices. The impurity contents in the high-purity-titanium and SiC were analyzed by neutron activation analyses (NAA) using k standardization method. Analyses showed that the number of impurity elements detected from the high-purity-titanium and SiC were 6 and 9, respectively. Among these impurity elements, Sc detected from the high-purity-titanium and Fe detected from SiC were comparatively long half life nuclides. From the viewpoint of exposure in handling them, we need to examine the impurity control of materials.
Ikeshima, Yoshiaki; Ishida, Takuya*; Tsuchiya, Kunihiko; Tomita, Kenji; Ebisawa, Hiroyuki; Magome, Hirokatsu; Nakamichi, Masaru*; Kitajima, Toshio; Kawamura, Hiroshi
JAERI-Tech 2005-005, 37 Pages, 2005/02
no abstracts in English
Komeda, Masao; Magome, Hirokatsu; Sagawa, Hisashi
no journal, ,
no abstracts in English
Komeda, Masao; Yamamoto, Kazuyoshi; Magome, Hirokatsu; Isshiki, Masahiko*; Sagawa, Hisashi
no journal, ,
no abstracts in English
Kusunoki, Tsuyoshi; Magome, Hirokatsu; Takeuchi, Masaki; Kobayashi, Shinsho*; Yamashita, Kiyonobu
no journal, ,
JAEA has been conducting practical irradiation for production of Neutron-Transmutation-Doped-Silicon (NTD-Si) since 1977. The JRR-3 and JRR-4 of JAEA are used to irradiate Silicon ingots at present. A Silicon ingot is irradiated with an irradiation facility in the heavy water reflector tank in the JRR-3. The maximum size of silicon ingot which can be irradiated in the facility of JRR-3 is about 152 mm (6 inches) in diameter and 600 mm in length. A silicon ingot is irradiated in the irradiation facility by the side of reactor core in the JRR-4. The maximum silicon ingot which can be irradiated in JRR-4 is about 125 mm (5 inches) in diameter and the 400 mm in length. The amount of NTD-Si was about 3.7 tons at the JRR-3 and about 0.7 tons at the JRR-4 in 2006 Japanese fiscal year. We are planning to investigate the expansion technology of the NTD-Si productivity in the JRR-3.