Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Crystal growth procedure of HIV-1 protease-inhibitor KNI-272 complex for neutron structural analysis at 1.9 ${AA}$ resolution

Shimizu, Noriko*; Sugiyama, Shigeru*; Maruyama, Mihoko*; Takahashi, Yoshinori*; Adachi, Motoyasu; Tamada, Taro; Hidaka, Koshi*; Hayashi, Yoshio*; Kimura, Toru*; Kiso, Yoshiaki*; et al.

Crystal Growth & Design, 10(7), p.2990 - 2994, 2010/06

 Times Cited Count:11 Percentile:73.7(Chemistry, Multidisciplinary)

We report crystal growth of human immunodeficiency virus 1 protease (HIV PR) in a complex with its inhibitor KNI-272 by six different methods. Comparative analysis indicates that top-seeded solution growth (TSSG) and TSSG combined with the floating and stirring technique (TSSG-FAST) are efficient strategies for rapidly obtaining large single crystals and effectively preventing polycrystallization of the seed crystal. Neutron diffraction analysis confirmed that the crystalobtained by TSSG is a high-quality single crystal. Furthermore, crystal shape was observed to be influenced by solution flow, suggesting that the degree of supersaturation significantly affects the crystal growth direction of HIV PR complex. This finding implies that the shape of the HIV PR complex crystal might be controlled by the solution flow rate.

JAEA Reports

Study on the effects of long-term evolution of geological environment on groundwater flow (Contract research)

Imai, Hisashi*; Yamashita, Ryo*; Shiozaki, Isao*; Urano, Kazuhiko*; Kasa, Hiroyoshi*; Maruyama, Yoshio*; Niizato, Tadafumi; Maekawa, Keisuke

JAEA-Research 2009-001, 116 Pages, 2009/03

JAEA-Research-2009-001.pdf:32.12MB

Evaluation of long-term geological evolution and its impact on groundwater flow is one of the major themes within the frame of Horonobe Underground Research Laboratory Project. For the purpose of development of a groundwater flow modeling methodology considering the effects of long-term geological evolution, following three items were studied: (1) Upgrade of SMS (Sequential Modeling System of geo-environmental evolution impact on groundwater flow) which was developed in 2006 FY; (2) Groundwater flow simulation under more realistic conditions of geological structures and hydrogeological conditions; and (3) Sensitivity study of geo-environmental evolution impacts on groundwater flow. The studies showed following suggestive results. (1) Development of a precise time step setting enabled to narrow the gaps in simulated head between time steps in which the model configuration used to deformed. (2) Several aspects have been found from studies on impact factors such as deposition on pore pressure, recharge rate and difference in density of saline groundwater. For evaluation of pore pressure induced by deposition, it is necessary to model the porosity and permeability variation considering the exceed pore pressure change. The setting of recharge rate during the Ice Age influence the characteristics of groundwater flow in coastal and hilly areas. The density of groundwater is not so influential as topological potential factors, however it is effective for the characteristics of groundwater flow in coastal area and intrusion of recharge water from ground surface. (3) The sensitivity study on faulting characteristics indicated that the two types of fault configuration and the hydraulic conductivity setting considered are not influential on the nature of groundwater flow above the depth of 500 m.

Journal Articles

None

Yoshioka, Naoya; Sugihara, Kozo; Kinashi, Hideo*; Hata, Koji*; Maruyama, Makoto*

Zairyo, 42(474), p.324 - 328, 1993/03

None

3 (Records 1-3 displayed on this page)
  • 1