Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Niunoya, Sumio*; Hata, Koji*; Aoyagi, Kazuhei; Matsui, Hiroya
Tonneru Kogaku Hokokushu (CD-ROM), 34, p.IV-1_1 - IV-1_6, 2024/12
A multi-optical measurement probe consisting of an optical fiber AE sensor, a pore pressure sensor, and a thermometer was installed at a depth from 350 to 370 m of the East access shaft. Using this measurement system, we continuously monitored the EDZ around the shaft and changes in pore water pressure. In this report, we summarized the measured AE and pore pressure data during the maintenance period after the completion of excavation to a depth of 350 m, and analyze the waveform data when earthquake occurred. We also investigated whether the measurement system can capture the effect of seismic motion to the EDZ. As a result, the AE count was slightly increased and pore pressure was slightly changed owing to the seismic motion, however, there is little impact to the EDZ.
Yoshida, Hidekazu*; Yamamoto, Koshi*; Asahara, Yoshihiro*; Maruyama, Ippei*; Karukaya, Koichi*; Saito, Akane*; Matsui, Hiroya; Mochizuki, Akihito; Jo, Mayumi*; Katsuta, Nagayoshi*; et al.
Communications Engineering (Internet), 3, p.67_1 - 67_10, 2024/05
A capability to permanently seal fluid flow-paths through bedrock, like boreholes or underground tunnels, is needed to ensure the long-term safety and effectiveness of many underground activities e.g. CO storage, hydrocarbon field abandonment, and nuclear waste disposal. Commonly used cementitious seals may not be sufficiently durable due to chemical and physical degradation. Learning from natural calcite (CaCO) concretion formation, a more durable sealing method was developed using a "concretion-forming solvent". The method was tested by sealing flow-paths next to a tunnel in an underground research laboratory at 350 meters depth. The flow-paths initially sealed rapidly, then resealed after disturbance by earthquakes (M5.4). The treated rock recovered its very low natural permeability, demonstrating permanent sealing that is robust.
Nara, Yoshitaka*; Kashiwaya, Koki*; Oketani, Kazuki*; Fujii, Hirokazu*; Zhao, Y.*; Kato, Masaji*; Aoyagi, Kazuhei; Ozaki, Yusuke; Matsui, Hiroya; Kono, Masanori*
Zairyo, 73(3), p.220 - 225, 2024/03
The fractures in the rock are the main pass of groundwater flow and solute transport. The filling of fine-grained particle, such as clay minerals, was confirmed to decrease the permeability of rock by laboratory experiment. This research aimed to verify the occurrence of the phenomena in the field. The water containing the clay minerals was injected into the rock at the 200m stage of the Mizunami Underground research laboratory. The hydraulic conductivity decreased two order before and after the injection. This result suggested that the decrease of hydraulic conductivity by the filling of fine-grained particle in the fractures occurred in the real field.
Yoshida, Hidekazu*; Yamamoto, Koshi*; Asahara, Yoshihiro*; Maruyama, Ippei*; Karukaya, Koichi*; Saito, Akane*; Matsui, Hiroya; Mochizuki, Akihito; Katsuta, Nagayoshi*; Metcalfe, R.*
Powering the Energy Transition through Subsurface Collaboration; Proceedings of the 1st Energy Geoscience Conference (Energy Geoscience Conference Series, 1), 20 Pages, 2024/00
A capability to permanently seal fluid flow-paths in bedrock, such as natural faults/fractures, and damaged zones around boreholes/excavations, is needed to ensure the long-term safety and effectiveness of many underground activities. Cementitious materials are commonly used as seals, however these materials unavoidably undergo physical and chemical degradation, therefore potentially decreasing seal durability. In order to solve these problems, a more durable sealing method using concretion-forming resin has been developed by learning from natural calcite (CaCO) concretion formation. The sealing capability of resin was tested by experiments on bedrock flow-paths in an underground research laboratory (URL), Hokkaido, Japan. The results showed a decrease the permeability rapidly down to 1/1,000 of the initial permeability due to calcite precipitation over a period of one year. During the experiment inland earthquakes occurred with foci below the URL (depths 2-7 km and maximum magnitude 5.4). Due to the earthquakes the hydraulic conductivities of the flow-paths sealed initially by concretion-forming resin increased. However, these flow-paths subsequently resealed rapidly, and within a few months recovered the same hydraulic conductivities as before the earthquakes. This new technique for rapidly producing long-lasting seals against fluid flow through rocks will be applicable to many kinds of underground activities.
Motoshima, Takayuki*; Matsui, Hiroya; Kawakubo, Masahiro*; Kobayashi, Masato*; Ichimura, Tetsuhiro*; Sugita, Yutaka
Nihon Genshiryoku Gakkai-Shi ATOMO, 64(3), p.163 - 167, 2022/03
no abstracts in English
Kamata, Kento*; Nara, Yoshitaka*; Matsui, Hiroya; Ozaki, Yusuke
Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.205 - 209, 2021/01
When considering the projects such as radioactive waste disposal, it is important to evaluate the confinement performance of underground substances in rock mass. However, the change in permeability of macro-fractured mudstone has not been sufficiently studied. Therefore, in this study, we investigated its effect on permeability by introducing a macro-fracture into a cylindrical specimen of mudstone distributed in the Horonobe area, Hokkaido. First, the hydraulic conductivity was measured by subjecting a specimen with a macro-fracture introduced by a brazilian test to a falling head permeability test. After that, it was compared with the hydraulic conductivity of the intact specimen measured by the transient pulse method. As a result, it was confirmed that the hydraulic conductivity was increased by about one order due to the introduction of macro-fracture. The increase rate of hydraulic conductivity obtained from the results of this research was smaller than that of previous researches using granite and basalt.
Okano, Aoi*; Kimoto, Kazushi*; Matsui, Hiroya
Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.633 - 636, 2021/01
This study evaluates the acoustic anisotropy of granite using surface waves. It is well-known that granite shows acoustic anisotropy due to preferentially oriented microcracks. Therefore it may be possible to gain information on the microcracks from the measurement of the acoustic anisotropy. In the conventional rock core elastic wave test, acoustic anisotropy has been evaluated by the ultrasonic transmission test. However, it is difficult to apply this method to field measurement and irregularly-shaped specimens. Therefore, in this study, we attempted to evaluate the acoustic anisotropy of granite using surface waves. By this method, the acoustic anisotropy was evaluated based on the changes in the surface wave amplitude, velocity, and frequency when the transmission direction was varied stepwise at a constant angle. As a result, the proposed surface wave technique evaluated acoustic anisotropy successfully. Furthermore, it was found that the acoustic anisotropy emerges because the microcracks change the apparent rigidity of the granite specimen.
Takeuchi, Ryuji; Iwatsuki, Teruki; Matsui, Hiroya; Nohara, Tsuyoshi; Onoe, Hironori; Ikeda, Koki; Mikake, Shinichiro; Hama, Katsuhiro; Iyatomi, Yosuke; Sasao, Eiji
JAEA-Review 2020-001, 66 Pages, 2020/03
The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of JAEA reformation in 2014, JAEA identified three remaining important issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technologies". The R&D on three remaining important issues have been carrying out in the MIU Project. In this report, the current status of R&D and construction activities of the MIU Project in fiscal year 2018 is summarized.
Matsui, Hiroya; Watanabe, Kazuhiko*; Mikake, Shinichiro; Niimi, Katsuyuki*; Kobayashi, Shinji*; Toguri, Satohito*
Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.293 - 298, 2020/01
Japan Atomic Energy Agency has been observed seismic motions induced by earthquakes, at ground surface, galleries at 100m, 300m and 500m depth of Mizunami underground research laboratory for over 10 years. The results suggested that the amplitude of the seismic motion decreases with depth as the previous study on crystalline rock at Kamaishi mine indicated. Detailed analysis on the observed seismic motions shows that the Fourier amplitude and the phase difference of the earthquake occurred near epicenter correspond with the one calculated by one-dimensional multiple reflection theory.
Kimoto, Kazushi*; Okano, Aoi*; Saito, Takayasu*; Sato, Tadanobu*; Matsui, Hiroya
Doboku Gakkai Rombunshu, A2 (Oyo Rikigaku) (Internet), 76(2), p.I_97 - I_108, 2020/00
This study investigates the propagation characteristics of surface wave traveling in a random heterogeneous medium. For this purpose, ultrasonic measurements are performed on a granite block as a typical randomly heterogeneous medium. In this measurement, a line-focus transducer is used to excite ultrasonic waves, whereas a laser Doppler vibrometer is used to pickup the ultrasonic motion on the surface of the granite block. The measured waveforms are analysed in the frequency domain to evaluate the travel-time for each measurement point based on the Fermat's principle. From the ensemble of travel-times, the probability distribution is established as a function of travel-distance. The uncertainty of the travel-time and its spatial evolution are then investigated using the standard deviation of the travel-time as a measure of the uncertainty. As a result, it was found that the uncertainty is approximately proportional to the mean travel-time divided by the square root travel-distance.
Matsui, Hiroya; Yahagi, Ryoji*; Ishizuka, Hikaru*; Toguri, Satohito*
WIT Transactions on Ecology and the Environment, Vol.247, p.145 - 159, 2020/00
In situ backfilling experiment using spray method in the small scale drift (approximately 4 by 3 m scale) was conducted at 500 m depth in Mizunami Underground Research Laboratory (MIU) established by JAEA (Japan Atomic Energy Agency). The backfill material consists of sand and bentonite. Specification for the backfill material was designed to satisfy the target permeability of generic host rock (10 m/sec) assumed by NUMO. In this case, effective clay density should be 0.4 Mg/m or more. Quality control of the material before backfilling was performed by setting the initial water contents (average 14%) based on the results of the laboratory testing and preliminary spray testing on ground surface. Densities of the backfilled material measured at any points satisfied the specification and the results suggested the establishment of the practical quality control methodology of the backfilling by spray method under actual deep geological environment. The in situ experiment was sponsored by METI (Ministry of Environment, Trade and Industry).
Takeuchi, Ryuji; Iwatsuki, Teruki; Matsui, Hiroya; Ikeda, Koki; Mikake, Shinichiro; Hama, Katsuhiro; Iyatomi, Yosuke; Matsuoka, Toshiyuki; Sasao, Eiji
JAEA-Review 2019-014, 30 Pages, 2019/10
The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency(JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock(granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important remaining issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technology". The R&D on three remaining important issues have been carrying out in the MIU Project. This report summarizes the R&D activities planned for fiscal year 2019 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase.
Ichikawa, Yasuaki*; Kimoto, Kazushi*; Matsui, Hiroya
JAEA-Research 2019-005, 32 Pages, 2019/10
It is important to evaluate the mechanical stability around the geological repository for high-level radioactive waste, during not only the design, construction and operation phases, but also the post-closure period over several millennia. The rock mass around the tunnels could be deformed in response to time dependent behaviors such as creep and stress relaxation. Therefore, this study has started as a joint research with Okayama University from 2016. This report summarize the results of the joint research performed in fiscal year 2017 and 2018. Based on the research results obtained in fiscal year 2016, automatic measurement system was developed, which can collect very large data on surface elastic wave propagation in a short time, also the applicability of various kinds of parameters derived from measured elastic wave data was examined.
Kono, Masaru*; Hayama, Kazunori*; Matsui, Hiroya; Ozaki, Yusuke
JAEA-Technology 2019-011, 35 Pages, 2019/07
To verify long-term safety performance of the sensor for decades, we decided the extension of the collaborative research and the evaluation test of long-term durability of fiber-optic crack detection sensor developed by Tokyo Measuring Instruments Laboratory Co., Ltd. at the Mizunami Underground Research Laboratory were continued from FY 2015 to FY 2018. As a result, the measurement system using of the fiber-optic crack detection sensor is applicable for long-term measurement in deep underground area and find the future subject.
Takeuchi, Ryuji; Iwatsuki, Teruki; Matsui, Hiroya; Nohara, Tsuyoshi; Onoe, Hironori; Ikeda, Koki; Mikake, Shinichiro; Hama, Katsuhiro; Iyatomi, Yosuke; Sasao, Eiji
JAEA-Review 2019-005, 76 Pages, 2019/06
The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of the research program and management system revision of the entire JAEA organization in 2014, JAEA identified three remaining important issues on the geoscientific research program based on the latest results of the synthesizing research and development: "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technologies". The research and development on three remaining important issues have been carrying out on the MIU project. In this report, the current status of the research and development activities and construction in fiscal year 2017 is summarized.
Toguri, Satohito*; Yahagi, Ryoji*; Okihara, Mitsunobu*; Takeuchi, Nobumitsu*; Kurosaki, Hiromi*; Matsui, Hiroya
JAEA-Technology 2018-017, 161 Pages, 2019/03
The Japan Atomic Energy Agency has been conducting research on three critical issues for development of: engineering techniques for underground construction, modelling techniques of mass transfer and tunnel backfilling methods at the Mizunami Underground Research Laboratory on the basis of Medium to Long-Term Plan of Japan Atomic Energy Agency. This report describes the overall plan of in-situ test to backfill a part of Mizunami Underground Research Laboratory, which is planned for "development of tunnel backfilling method".
Ishida, Tsuyoshi*; Fujito, Wataru*; Yamashita, Hiroto*; Naoi, Makoto*; Fujii, Hirokazu*; Suzuki, Kenichiro*; Matsui, Hiroya
Rock Mechanics and Rock Engineering, 52(2), p.543 - 553, 2019/02
Times Cited Count:18 Percentile:65.06(Engineering, Geological)We pressurized and injected water in a hole drilled downward from a floor of the 500 m level gallery in MIU, central Japan. Acoustic emissions (AEs) monitored with 16 sensors in four boreholes located 1 m away from the HF hole exhibited two-dimensional distributions, which likely delineate a crack induced by the fracturing. Expansions of the regions in which AEs occurred were observed only immediately after the first and second BDs. Many AE events in other periods were distributed within the regions where AE events had already occurred. The initial motion polarities of P-waves indicate that tensile-dominant AE events occurred when the regions expanded and they were distributed primarily on the frontiers of the regions where AE events had already occurred. The experimental results suggest that increasing the injection flow rate is effective for generating new cracks in the refracturing, with the new crack expansions being induced by tensile fracturing.
Matsui, Hiroya; Mikake, Shinichiro; Ikeda, Koki; Tsutsue, Jun
Dai-46-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.286 - 291, 2019/01
Japan Nuclear Energy Agency (JAEA) has been conducting the groundwater recovery experiment to develop a methodology to estimate the geological environment recovery after closure of the drift at GL-500m in Mizunami Underground Research Laboratory, Japan. For the experiment, an impervious concrete plug was constructed to maintain a recovered water pressure and its functions were assessed based on the monitoring results and interpretation of several kinds of measurements performed inside and outside of the plug during groundwater recovery test. This report summarized the change of the condition of the plug due to groundwater recovery estimated based on the different kinds of monitoring data.
Takeuchi, Ryuji; Iwatsuki, Teruki; Matsui, Hiroya; Ikeda, Koki; Mikake, Shinichiro; Hama, Katsuhiro; Iyatomi, Yosuke; Sasao, Eiji
JAEA-Review 2018-019, 29 Pages, 2018/12
The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: "Development of countermeasure technologies for reducing groundwater inflow", "Development of modelling technologies for mass transport" and "Development of drift backfilling technology", based on the latest results of the synthesizing research and development (R&D). The R&D on three remaining important issues have been carrying out on the MIU Project. This report summarizes the R&D activities planned for fiscal year 2018 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase.
Fukui, Katsunori*; Hashiba, Kimihiro*; Matsui, Hiroya
JAEA-Research 2018-006, 57 Pages, 2018/10
It is important to evaluate the stability of a repository for high-level radioactive waste not only during the design, construction and operation phases, but also during the post-closure period, for time frames likely exceeding several millennia or longer. The rock mass around the tunnels could be deformed through time in response to time dependent behavior. In view of above points, this study has been started as a collaboration study with the University of Tokyo from FY2016. In the FY2017, the creep test of Tage tuff was continuously conducted and reached its twentieth year. The overview of the test was described, and the phenomenological aspects and the mechanisms of the creep of tuff were discussed with comparing the long- and short-term creep tests. The effects of loading rate and water content on rock strength were examined under various water conditions. The variable-compliance-type constitutive model was modified to reproduce those under uniaxial tension.