Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamauchi, Kunihito; Okano, Jun; Shimada, Katsuhiro; Omori, Yoshikazu; Terakado, Tsunehisa; Matsukawa, Makoto; Koide, Yoshihiko; Kobayashi, Kazuhiro; Ikeda, Yoshitaka; Fukumoto, Masahiro; et al.
JAEA-Technology 2015-053, 36 Pages, 2016/03
The superconducting Satellite Tokamak machine "JT-60SA" under construction in Naka Fusion Institute is an international collaborative project between Japan (JA) and Europe (EU). The contributions for this project are based on the supply of components, and thus European manufacturer shall conduct the installation, commissioning and tests on Naka site. This means that Japan Atomic Energy Agency (JAEA) had a quite difficult issue to manage the works by European workers and their safety although there is no direct contract. This report describes the approaches for the work and safety managements, which were agreed with EU after the tough negotiation, and then the completed on-site works for Quench Protection Circuits (QPC) as the first experience for EU in JT-60SA project. With the help of these approaches by JAEA, the EU works for QPC were successfully completed with no accident, and a great achievement was made for both EU and JA.
Novello, L.*; Cara, P.*; Coletti, A.*; Gaio, E.*; Maistrello, A.*; Matsukawa, Makoto; Philipps, G.*; Tomarchio, V.*; Yamauchi, Kunihito
IEEE Transactions on Applied Superconductivity, 26(2), p.4700507_1 - 4700507_7, 2016/03
Times Cited Count:7 Percentile:42.28(Engineering, Electrical & Electronic)Urano, Hajime; Fujita, Takaaki*; Ide, Shunsuke; Miyata, Yoshiaki; Matsunaga, Go; Matsukawa, Makoto
Fusion Engineering and Design, 100, p.345 - 356, 2015/11
Times Cited Count:13 Percentile:76.47(Nuclear Science & Technology)The operation scenarios for plasma breakdown and current ramp-up phases in JT-60SA tokamak have been developed. The induced current in the in-vessel conducting elements such as vacuum vessel and stabilizing plate increases to the comparable level of plasma current of 600 kA during the breakdown phase and thus enhances the strength of error field. The optimized scenarios for half and full pre-magnetization cases satisfied the conditions required for the plasma initiation. At the initial plasma, the vertical magnetic field required to sustain the plasma position was controlled by the outer equilibrium field (EF) coil currents which compensate for a vertical field due to a large eddy current. The condition for the formation of divertor configurations given by the combination of the magnetic flux for plasma and the plasma current enables us to develop the operational scenarios with a smooth transition from a limiter to a divertor configuration.
Ferro, A.*; Gaio, E.*; Novello, L.*; Matsukawa, Makoto; Shimada, Katsuhiro; Kawamata, Yoichi; Takechi, Manabu
Fusion Engineering and Design, 98-99, p.1053 - 1057, 2015/10
Times Cited Count:2 Percentile:19.3(Nuclear Science & Technology)Lampasi, A.*; Zito, P.*; Coletti, A.*; Novello, L.*; Matsukawa, Makoto; Shimada, Katsuhiro; Burini, F.*; Kuate-Fone, Y.*; Taddia, G.*; Tenconi, S.*
Fusion Engineering and Design, 98-99, p.1098 - 1102, 2015/10
Times Cited Count:7 Percentile:54.99(Nuclear Science & Technology)Zito, P.*; Lampasi, A.*; Coletti, A.*; Novello, L.*; Matsukawa, Makoto; Shimada, Katsuhiro; Cinarelli, D.*; Portesine, M.*; Dorronsoro, A.*; Vian, D.*
Fusion Engineering and Design, 98-99, p.1191 - 1196, 2015/10
Times Cited Count:12 Percentile:71.06(Nuclear Science & Technology)Maistrello, A.*; Gaio, E.*; Novello, L.*; Matsukawa, Makoto; Yamauchi, Kunihito
Fusion Engineering and Design, 98-99, p.1109 - 1112, 2015/10
Times Cited Count:5 Percentile:43.03(Nuclear Science & Technology)Novello, L.*; Baulaigue, O.*; Coletti, A.*; Dumas, N.*; Ferro, A.*; Gaio, E.*; Lampasi, A.*; Maistrello, A.*; Matsukawa, Makoto; Shimada, Katsuhiro; et al.
Fusion Engineering and Design, 98-99, p.1122 - 1126, 2015/10
Times Cited Count:15 Percentile:80.62(Nuclear Science & Technology)Zito, P.*; Lampasi, A.*; Novello, L.*; Matsukawa, Makoto; Shimada, Katsuhiro; Portesine, M.*; Fasce, F.*; Cinarelli, D.*; Dorronsoro, A.*; Vian, D.*
Proceedings of IEEE 15th International Conference on Environment and Electrical Engineering (IEEE-EEEIC 2015), p.156 - 160, 2015/06
Burini, F.*; Kuate-Fone, Y.*; Taddia, G.*; Tenconi, S.*; Lampasi, A.*; Zito, P.*; Matsukawa, Makoto; Shimada, Katsuhiro; Coletti, A.*; Novello, L.*
Proceedings of 40th Annual Conference of the IEEE Industrial Electronics Society (IECON 2014), p.5035 - 5040, 2014/10
Maistrello, A.*; Gaio, E.*; Ferro, A.*; Perna, M.*; Panizza, C.*; Soso, F.*; Novello, L.*; Matsukawa, Makoto; Yamauchi, Kunihito
IEEE Transactions on Applied Superconductivity, 24(3), p.3801505_1 - 3801505_5, 2014/06
Times Cited Count:13 Percentile:58.45(Engineering, Electrical & Electronic)Gaio, E.*; Maistrello, A.*; Barp, M.*; Perna, M.*; Coffetti, A.*; Soso, F.*; Novello, L.*; Matsukawa, Makoto; Yamauchi, Kunihito
Fusion Engineering and Design, 88(6-8), p.563 - 567, 2013/10
Times Cited Count:14 Percentile:74.94(Nuclear Science & Technology)Itami, Kiyoshi; Hong, S.-H.*; Bae, Y.-S.*; Matsukawa, Makoto; Kim, W.-C.*; KSTAR Team*
Journal of Nuclear Materials, 438, p.S930 - S935, 2013/07
Times Cited Count:12 Percentile:69.87(Materials Science, Multidisciplinary)Matsukawa, Makoto; Shimada, Katsuhiro; Yamauchi, Kunihito; Gaio, E.*; Ferro, A.*; Novello, L.*
Plasma Science and Technology, 15(3), p.257 - 260, 2013/03
Times Cited Count:7 Percentile:32.21(Physics, Fluids & Plasmas)To realize high performance plasmas in tokamak devices, error field correction (EFC) is one of the very important issues. Actually, error field correction coil is being planned in ITER using superconducting coils, while normal copper coils will be employed in JT-60SA. Similar coils are installed and under operation in many devices over the world. In the case of JT-60SA, EFC coils will be realized by 12 (or 18) sector coils installed inside the vacuum vessel. This paper describes a conceptual design study for the circuit configuration and control strategy of the power supply system of these EFC coils. In conclusion, to minimize the number of current feeders and semiconductor power devices, multi-phase inverter is the best solution not only from the cost merit but also from a view point of canceling the induced voltage of axisymmetric magnetic component.
Shimada, Katsuhiro; Terakado, Tsunehisa; Yamauchi, Kunihito; Matsukawa, Makoto; Baulaigue, O.*; Coletti, R.*; Coletti, A.*; Novello, L.*
Plasma Science and Technology, 15(2), p.184 - 187, 2013/02
Times Cited Count:2 Percentile:9.46(Physics, Fluids & Plasmas)Yamauchi, Kunihito; Shimada, Katsuhiro; Terakado, Tsunehisa; Matsukawa, Makoto; Coletti, R.*; Lampasi, A.*; Gaio, E.*; Coletti, A.*; Novello, L.*
Plasma Science and Technology, 15(2), p.148 - 151, 2013/02
Times Cited Count:6 Percentile:28.02(Physics, Fluids & Plasmas)Okayasu, Yuichi*; Tomizawa, Hiromitsu*; Matsubara, Shinichi*; Sato, Takahiro*; Ogawa, Kanade*; Togashi, Tadashi*; Takahashi, Eiji*; Minamide, Hiroaki*; Matsukawa, Ken*; Aoyama, Makoto; et al.
Proceedings of 1st International Beam Instrumentation Conference (IBIC 2012) (Internet), 5 Pages, 2012/10
no abstracts in English
Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Yoshida, Kiyoshi; Yamauchi, Kunihito; Shimada, Katsuhiro; Terakado, Tsunehisa; Matsukawa, Makoto; Hasegawa, Mitsuru*; Minato, Tsuneaki*; et al.
IEEE Transactions on Applied Superconductivity, 22(3), p.9501405_1 - 9501405_5, 2012/06
Times Cited Count:4 Percentile:29.98(Engineering, Electrical & Electronic)The withstand voltage of turn insulation is essential issues for the superconducting magnet. The actual turn voltage is larger than the turn voltage under the ideal condition because of the voltage fluctuations of the power supply and the resonance phenomenon in the magnet. In this paper, the voltage measurement of the JT-60U power supply and the resonance characteristics of the EF4 are described. The actual maximum turn voltage is almost same as the voltage under the ideal condition.
Gaio, E.*; Maistrello, A.*; Coffetti, A.*; Gargano, T.*; Perna, M.*; Novello, L.*; Coletti, A.*; Matsukawa, Makoto; Yamauchi, Kunihito
IEEE Transactions on Plasma Science, 40(3), p.557 - 563, 2012/03
Times Cited Count:29 Percentile:78.93(Physics, Fluids & Plasmas)Shimada, Katsuhiro; Baulaigue, O.*; Cara, P.*; Coletti, A.*; Coletti, R.*; Matsukawa, Makoto; Terakado, Tsunehisa; Yamauchi, Kunihito
Fusion Engineering and Design, 86(6-8), p.1427 - 1431, 2011/10
Times Cited Count:5 Percentile:40.36(Nuclear Science & Technology)