Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
辻 智之; 杉杖 典岳; 佐藤 史紀; 松島 怜達; 片岡 頌治; 岡田 翔太; 佐々木 紀樹; 井上 準也
日本原子力学会誌ATOMO, 62(11), p.658 - 663, 2020/11
日本原子力研究開発機構ではバックエンド関連の研究・技術開発として、原子力施設の廃止措置や安全で環境負荷低減につながる低レベル放射性廃棄物の処理処分技術開発と、地層処分の基盤的研究開発を進めてきた。これらバックエンドに関する原子力機構の研究・技術開発のうち、原子力施設の廃止措置や低レベル放射性廃棄物の処理処分技術開発の最前線を紹介する。
佐藤 史紀; 松島 怜達; 伊藤 義之
QST-M-16; QST Takasaki Annual Report 2017, P. 60, 2019/03
東海再処理施設のLWTFで発生する低レベル放射性液体廃棄物のセメント固化体からの放射線による水素ガス発生について検討した。
松島 怜達; 佐藤 史紀; 齋藤 恭央; 新 大軌*
Proceedings of 3rd International Symposium on Cement-based Materials for Nuclear Wastes (NUWCEM 2018) (USB Flash Drive), 4 Pages, 2018/10
東海再処理施設では、発生する低放射性の液体廃棄物及び固体廃棄物を処理する施設としてLWTFを建設し、コールド試験を実施している。本施設では、当初、液体廃棄物の処理に伴って発生する核種分離後の硝酸廃液に対し、ホウ酸塩を用いて固化体とすることとしていた。しかし、現在は、環境負荷低減のために廃液内の硝酸根を分解する必要があり、硝酸塩を炭酸塩に置換した後、セメント固化体とする計画として、設備導入に向けた検討を進めている。現在、この廃液に対するセメント固化技術開発として、高炉スラグ(BFS)を主成分としたセメント材の適用検討を行っている。本発表では実規模(200Lドラム缶スケール)で試験を行った結果についてまとめたものを報告する。
伊藤 義之; 松島 怜達; 佐藤 史紀
QST-M-8; QST Takasaki Annual Report 2016, P. 69, 2018/03
東海・再処理施設の低放射性廃棄物処理技術開発施設(LWTF)では、低レベル放射性廃液をセメント固化し廃棄体を作製することを計画している。本研究では、作製したセメント固化体からの水素発生量を検討するため、量子科学技術研究開発機構高崎量子応用研究所のコバルト60線照射施設にて、セメント試料の線照射試験を行い、水素生成G値を測定した。その結果、スラリ固化体(充てん率10
50wt%)のG値は、約0.03(n/100eV)であり、スラリ廃液を充てんしていない場合に比べて、およそ半分に低下した。硝酸イオンは、水素生成を抑制する効果があり、スラリ中に含まれる硝酸塩の影響でG値は低下したと考えられる。また、炭酸塩固化体(充てん率10wt%)のG値は、約0.14(n/100eV)であったが、20wt%や30wt%の炭酸塩固化体では、それよりも低いG値であった。XRD結果から、塩の充てん率が高くなるほど、Na
CO
を含んだセメント生成物(Pirssonite)が多く見られ、Na
CO
のG値は、CaCO
よりも小さいため、20wt%や30wt%の炭酸塩固化体のG値は小さくなったと考えられる。
佐藤 淳也; 菊地 博*; 加藤 潤; 榊原 哲朗; 松島 怜達; 佐藤 史紀; 小島 順二; 中澤 修
QST-M-8; QST Takasaki Annual Report 2016, P. 62, 2018/03
福島第一原子力発電所における多核種除去設備から発生している廃吸着材は、多量の放射性核種を含有しており、処分のために発生した固化体への放射線影響が懸念されている。本件は、廃吸着材の模擬物をセメント固化した試料において放射線分解によって発生する水素ガス量の調査を目的として実施した。チタン酸塩, 酸化チタン, フェロシアン化物, キレート樹脂及び樹脂系吸着材を対象として、セメント固化材(普通ポルトランドセメント及び高炉スラグセメント)を用いて固化試料を作製した。量子科学技術研究開発機構高崎量子応用研究所のコバルト照射施設を利用して線の照射試験を行い、セメント固化試料からの水素ガス発生を調査した。試験の結果、セメント固化試料から発生した水素ガス量を求め、水素ガス発生のG値を算出することができた。
木田 福香*; 中村 文也*; 新井 剛*; 松島 怜達; 齋藤 恭央
no journal, ,
本研究ではNa高含有放射性廃液中のNaとその他核種の分離に適した吸着材の開発を行った。本研究で開発した複合型IDA樹脂(SIDAR)は、Na高含有溶液から選択的に目的元素を吸着できることが示された。
片岡 頌治; 松島 怜達; 佐藤 史紀; 照沼 知己
no journal, ,
東海再処理施設の低放射性廃棄物処理技術開発施設(LWTF)は、再処理施設より発生する低放射性の液体廃棄物及び固体廃棄物を処理する施設として建設しており、コールド試験を実施している。本施設では、液体廃棄物の処理に伴って発生する硝酸塩廃液に対し、ホウ酸塩を用いて固化体とすることとしていたが、現在は炭酸塩廃液に置換した後、セメント固化体とする計画であり、設備導入に向けた検討、設計を進めている。本報告では、炭酸塩廃液について実規模(200Lドラム缶)でのセメント混練・固化試験を行い、セメント固化体の経時変化及び廃液組成が変化した際の強度への影響について検討した結果を報告する。
松島 怜達; 伊藤 義之; 小島 順二; 舛澤 俊*; 新井 剛*
no journal, ,
東海・再処理施設より発生する低レベル放射性廃液(LLW)は、低放射性廃棄物処理技術開発施設(LWTF)にて共沈限外ろ過・吸着処理後、セメント固化される予定である。その際、セメント硬化反応に影響を与える金属元素の組成把握が重要であるが、LLWは高濃度のナトリウム(Na)を含むため、微量に含まれる金属元素の定量が困難であった。本研究では、Naと金属元素を群分離できる多孔性シリカ担体にイミノ二酢酸基を担持させた自製吸着材(SIDAR)について、吸着特性を調査し、LLWへの適応性の検討を行った。本研究では、SIDARを用いて振とう試験を行い、pH毎の吸着分配係数を算出することで吸着特性を評価した。SIDARは何れのpH領域においてもNaを非吸着であり、2価の金属元素に対しては、pH2以上で吸着分配係数が上昇していくことが明らかとなった。SIDARは、2価の金属元素に対し選択性を有することから、Naと2価の金属元素を分離することが可能であると示唆された。
松島 怜達; 佐藤 史紀; 堀口 賢一; 小島 順二; 山下 昌昭*; 坂井 悦郎*; 新 大軌*
no journal, ,
東海再処理施設の低放射性廃棄物処理技術開発施設(LWTF)は、再処理施設より発生する低放射性の液体廃棄物及び固体廃棄物を処理する施設として建設され、コールド試験が実施されている。本施設では、液体廃棄物の処理に伴って発生する硝酸廃液に対し、ホウ酸塩を用いて固化体とすることとしていたが、現在は炭酸塩廃液に置換した後、セメント固化体とする計画であり、設備導入に向けた検討、設計を進めている。本報告では、本炭酸廃液について実規模大(200Lドラム缶)でのセメント混練・固化試験を行い、セメント固化体の強度及びセメント材の配合を変化させた場合の強度への影響について検討した結果を報告する。
伊藤 義之; 松島 怜達; 佐藤 史紀; 齋藤 恭央
no journal, ,
東海・再処理施設の低放射性廃棄物処理技術開発施設(LWTF)では、3種類の廃液(スラリ廃液, リン酸塩廃液, 炭酸塩廃液)をセメント固化し廃棄体とすることを計画しており、セメント固化設備の設計(安全性評価)では、セメント固化体から発生する水素ガス発生量を評価する必要がある。このため、模擬のセメント固化体を用いた線照射試験を行い、各固化体の水素生成G値を測定した。その結果、スラリ固化体のG値は、約0.03、炭酸塩固化体0.02
0.14、リン酸塩固化体0.21
0.37(/100eV)であり、水素生成G値は、固化する廃液成分やその充てん率によって異なってくることが分かった。
松島 怜達; 佐藤 史紀; 齋藤 恭央; 新 大軌*
no journal, ,
東海再処理施設の低放射性廃棄物処理技術開発施設(LWTF)は、再処理施設より発生する低放射性の液体廃棄物及び固体廃棄物を処理する施設として建設され、コールド試験が実施されている。本施設では、液体廃棄物の処理に伴って発生する硝酸塩廃液に対し、ホウ酸塩を用いて固化体とすることとしていたが、現在は炭酸塩廃液に置換した後、セメント固化体とする計画であり、設備導入に向けた検討、設計を進めている。本報告では、この炭酸塩廃液について実規模大(200Lドラム缶)でのセメント混練・固化試験を行い、セメント固化体の経時変化における強度及び廃液組成が変化した際の強度への影響について検討した結果を報告する。
松島 怜達; 佐藤 史紀; 齋藤 恭央; 新 大軌*
no journal, ,
東海再処理施設の低放射性廃棄物処理技術開発施設(LWTF)は、再処理施設より発生する低放射性の液体廃棄物及び固体廃棄物を処理する施設として建設され、コールド試験が実施されている。本施設では、液体廃棄物の処理に伴って発生する硝酸塩廃液に対し、ホウ酸塩を用いて固化体とすることとしていたが、現在は炭酸塩廃液に置換した後、セメント固化体とする計画であり、設備導入に向けた検討、設計を進めている。本報告では、この炭酸塩廃液について実規模大(200Lドラム缶)でのセメント混練・固化試験を行い、セメント固化体の経時変化及び廃液組成が変化した際の強度への影響について検討した結果を報告する。
佐藤 史紀; 松島 怜達; 伊藤 義之; 齋藤 恭央
no journal, ,
低放射性廃棄物処理技術開発施設(LWTF)では、東海再処理施設内の各工程から発生した廃液を蒸発濃縮した低放射性濃縮廃液を処理する計画である。現在、この廃液については、核種分離(共沈・限外ろ過、Cs・Sr吸着)を実施後、硝酸根分解処理によって炭酸塩廃液とした上で、高炉セメントC種を用いて固化することを計画している。セメント固化設備の設計(安全性評価)では、固化体からの水素ガス発生量を評価する必要があるが、固化体の水素生成G値〔G(H)〕は、使用するセメント材の組成や固型化される廃液成分等によって異なる。本報では、実機で想定される組成(硝酸根の分解率)を持つ炭酸塩廃液を用いた固化体を作製した上で、
線照射してG(H
)を測定した。
佐藤 史紀; 片岡 頌治; 松島 怜達; 照沼 知己
no journal, ,
低放射性廃棄物処理技術開発施設(LWTF)では、東海再処理施設内の各工程から発生した廃液を蒸発濃縮した低放射性濃縮廃液を処理する計画である。現在、この廃液については、核種分離(共沈・限外ろ過、Cs・Sr吸着)を実施後、硝酸根分解処理によって炭酸塩廃液とした上で、高炉セメントC種を用いて固化することを計画している。この炭酸塩廃液の固化設備の安全性評価では、固化体からの水素ガス発生量を評価する必要があるが、固化体の水素生成G値〔G(H)〕は、使用するセメント材の組成や固型化される廃液成分等によって異なる。本報では、平成30年度に引き続き、実機で想定されるセメント材と炭酸塩廃液を用いて固化体を作製した上で、
線照射してG(H
)を測定した。
内山 章吾*; 松島 怜達; 腰越 広輝; 佐藤 史紀; 新井 剛*
no journal, ,
複合型イミノ二酢酸キレート樹脂(SIDAR)を自製し、高塩濃度溶液に含まれる微量核種回収に関する検討を行った。本研究の成果から、SIDARはNa濃度や対イオン種に依らず多価の核種に対して高い吸着分配係数を示すことが明らかとなり、高塩濃度溶液から微量核種を高効率に回収できることが示された。
片岡 頌治; 角田 弘貴; 松島 怜達; 佐藤 史紀; 白水 秀知
no journal, ,
東海再処理施設の低放射性廃棄物処理技術開発施設(LWTF)は、再処理施設より発生する低放射性の液体廃棄物及び固体廃棄物を処理する施設である。LWTFで処理する液体廃棄物は、低放射性濃縮廃液とリン酸廃液であり、これらはセメント固化する計画である。低放射性濃縮廃液については、既設の核種分離設備及び新設する硝酸根分解設備によりスラリ廃液と炭酸塩廃液に分離した後、セメント固化する。現在、硝酸根分解設備及びセメント固化設備の導入に向けて検討、設計を進めている。本報告では、炭酸塩廃液,リン酸廃液,スラリ廃液の模擬廃液を用いた実規模でのセメント混練試験を行った結果を報告する。
松島 怜達; 高橋 清文; 齋藤 恭央; 菊地 幸弘*; 新 大軌*; 白水 秀知
no journal, ,
低放射性廃棄物処理技術開発施設(LWTF)では、東海再処理施設で発生した炭酸塩廃液についてセメント固化を計画している。既報にて、炭酸ナトリウム及び硝酸ナトリウムを成分とする炭酸塩廃液を模擬した廃液に対して固化試験を行うことにより、炭酸塩廃液が固化可能であることを示してきた。一方で、炭酸塩廃液には微量ながら夾雑物として硫酸ナトリウムが共存することが予想されており、その影響を調査するために、これまでに、ビーカー規模での試験より、硫酸ナトリウムが共存した際の影響がないことを確認している。本報は、実規模大での試験を実施し、硫酸ナトリウムが共存した際の影響がないことを確認し、その結果を報告するものである。廃液内の硫酸ナトリウムの有無により、混練後の試料の流動性や硬化後の試料の圧縮強度等に影響がないことから、固化体性状に与える影響はないことを確認した。
佐藤 史紀; 片岡 頌治; 松島 怜達; 大竹 克巳*; 白水 秀知
no journal, ,
LWTFでは、東海再処理施設で発生した低放射性廃液やリン酸廃液をセメント固化する計画である。リン酸廃液については、リン酸を不溶化後に直接固化、低放射性廃液は核種分離(共沈・限外ろ過, Cs・Sr吸着)を実施してスラリ廃液と硝酸塩廃液に分離した上で、スラリ廃液は直接固化、硝酸塩廃液は硝酸根を分解して炭酸塩廃液とした後に固化する計画である。セメント固化設備の安全評価に向けて、固化体から発生する水素ガス量を評価する必要があるが、固化体の水素生成G値[G(H)]は使用するセメント材の組成や対象廃液の成分等によって異なる。現在、LWTFの設計では、TRU廃棄物処分に係る検討で採用されている保守的なG(H
)値を設定しているが、本報では、実際に模擬廃液の固化体を作製した上でガンマ線を照射し、発生する水素ガス量からG(H
)を測定して、現在設計で想定しているG(H
)と相違ないかを確認した。炭酸塩廃液の固化体のG(H
)は0.02-0.05n/100eV、スラリ廃液の固化体のG(H
)は0.03-0.04n/100eV、リン酸廃液の固化体のG(H
)は0.05-0.06n/100eVであった。現在、LWTFの設計で想定しているG(H
)は各固化体に対して0.05であり、適切な値が設定されていることを確認した。
佐藤 史紀; 片岡 頌治; 松島 怜達; 大竹 克巳*; 白水 秀知
no journal, ,
低放射性廃棄物処理技術開発施設(LWTF)では、東海再処理施設で発生した低放射性濃縮廃液やリン酸廃液をセメント固化する計画である。リン酸廃液については、リン酸を不溶化後に直接固化、低放射性濃縮廃液は核種分離(共沈・限外ろ過、Cs・Sr吸着)を行ってスラリ廃液と硝酸塩廃液に分離した上で、スラリ廃液は直接固化、硝酸塩廃液は硝酸根を分解して炭酸塩廃液とした後に固化する計画である。セメント固化設備の設計(安全評価)に向けて、固化体から発生する水素ガス量を評価する必要があるが、固化体のG(H)は使用するセメント材や対象廃液の成分等によって異なる。本報では、模擬廃液の固化体を作製した上で
線を照射し、G(H
)を測定した。
松島 怜達*; 新井 剛*; 堀口 賢一; 菅谷 篤志
no journal, ,
福島第一原子力発電所事故により大量の汚染水が発生しているが、現在は貯蔵されているだけの状態である。汚染水には海水由来の塩化ナトリウム及びほう酸を含有していると考えられ、これら化学物質を安定に固定できる新しいマトリックスの開発が求められている。本研究では、汚染水に含まれるホウ酸を固型化材に活用できるホウ酸ガラス固化法に着目した。これまでの研究において、ホウ酸と塩化ナトリウムを試薬でモル比1:0.5に混合し、1100Cで3時間溶融し冷却することでホウ酸ガラスが作製できる事を確認した。ホウ酸ガラスの形成には、ガラス相から塩素が揮発することが重要である。今回は、ガラス相から塩素が揮発することを確認するため、ホウ酸ガラス作製中の温度挙動を調査した。