Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
谷内 淑恵*; 松谷 悠佑*; 吉井 勇治*; 福永 久典*; 伊達 広行*; 甲斐 健師
International Journal of Molecular Sciences (Internet), 24(2), p.1386_1 - 1386_14, 2023/01
被引用回数:0生きた細胞に放射線が照射され、DNAの数ナノメートル以内に複雑な損傷が形成されると、細胞死のような生物影響を誘発すると考えられている。一般的に、細胞に形成された複雑なDNA損傷は、蛍光体を利用すると、損傷部位の周辺が焦点のように発光するため、蛍光顕微鏡で実験的に検出することができる。しかしながらこの検出法で、DNA損傷の複雑さの度合いを解析するまでには至ってなかった。そこで本研究では、計測した焦点サイズに注目すると共に、飛跡構造解析コードを用いてDNA損傷の複雑さの度合いを評価した。その結果、DNA損傷がより複雑になると、焦点サイズも増大する ことがわかった。本研究成果は、放射線生物影響の初期要因を解明するための新たな解析手法になることが期待される。
甲斐 健師; 樋川 智洋; 松谷 悠佑*; 平田 悠歩; 手塚 智哉*; 土田 秀次*; 横谷 明徳*
RSC Advances (Internet), 13(11), p.7076 - 7086, 2023/00
水の放射線分解に関する科学的知見は、生命科学などに幅広く利用されるが、水の分解生成物であるラジカルの生成メカニズムは未だ良く分かっていない。我々は、放射線物理の観点から、この生成メカニズムを解く計算コードの開発に挑戦し、第一原理計算により、水中の二次電子挙動は、水との衝突効果のみならず分極効果にも支配されることを明らかにした。さらに、二次電子の空間分布をもとに、電離と電子励起の割合を予測した結果、水和電子の初期収量の予測値は、放射線化学の観点から予測された初期収量を再現することに成功した。この結果は、開発した計算コードが放射線物理から放射線化学への合理的な時空間接続を実現できることを示している。本研究成果は、水の放射線分解の最初期過程を理解するための新たな科学的知見になることが期待できる。
嵯峨 涼*; 松谷 悠佑; 佐藤 光*; 長谷川 和輝*; 小原 秀樹*; 駒井 史雄*; 吉野 浩教*; 青木 昌彦*; 細川 洋一郎*
Radiotherapy and Oncology, p.109444_1 - 109444_9, 2023/00
非小細胞肺癌を治療する際、一度に大線量を照射する定位放射線療法が使用される。この治療計画と治療効果の関係は、一般的に線量と細胞死の関係を予測する数理モデルにより評価される。そのモデルパラメーターの数値は生物実験により決定できるが、臨床では治療成果の経験に基づき決定されるため、実験研究と臨床研究ではパラメータ決定の手法と数値に違いがある。以上の背景から、細胞実験で測定される細胞死と臨床の治療効果を結びつける橋渡し研究を進めた。ここでは、その相違の要因として考えられる癌幹細胞に着目し、細胞死と臨床成果を同時に予測可能な数理モデル(integrated microdosimetric-kinetic (IMK) model)を開発し、弘前大学病院における非小細胞肺癌の定位放射線療後の臨床治験に対して遡及的評価を行った。その結果、癌幹細胞を考慮したIMKモデルを用いることで、広範囲の線量域(0-15Gy)に対する細胞死と様々な治療計画(一回線量6-10Gy)に対する治療成果を同時に再現することに成功した。開発した数理モデルにより、癌幹細胞が臨床の治療効果に与える影響の正確な理解、これに基づく治療効果の予測技術の高精度化が期待できる。
小川 達彦; 平田 悠歩; 松谷 悠佑; 甲斐 健師
Isotope News, (784), p.13 - 16, 2022/12
入射荷電粒子が二次電子を生じる過程を原子サイズで明示的に計算する飛跡構造解析計算は、放射線生物影響,材料照射効果,放射線検出などの研究にとって重要な技術であり、近年主著者らの研究で新しい飛跡構造解析計算コードが開発された。従来の飛跡構造解析計算は標的物質の誘電関数を基に断面積を計算するため、誘電関数が良く測定されている水以外に、適用できるモデルは限られていた。本研究では誘電関数を使うことなく、二次電子エネルギー分布の系統式と阻止能を基に飛跡構造解析計算を行う手法により、誘電関数の測定値の有無にかかわらず、任意の物質で飛跡構造解析計算を実行することを可能とした。こうして開発したモデルで、陽子による水中の動径線量分布や二次電子生成量を計算したところ、従来のコードや実験値とよく一致した。このモデルは原子力機構の放射線輸送計算コードであるPHITS Ver3.25以降に実装され、任意物質に適用できる世界初の汎用飛跡構造解析コードとしてユーザーに提供されている。
松谷 悠佑; 甲斐 健師; Parisi, A.*; 吉井 勇治*; 佐藤 達彦
Physics in Medicine & Biology, 67(21), p.215017_1 - 215017_13, 2022/11
被引用回数:1 パーセンタイル:0.01(Engineering, Biomedical)陽子線治療は、X線治療と比較して、正常組織への副作用を低減しつつ腫瘍を照射することが可能である。陽子線照射後に発生する細胞死などの生物影響は、陽子線の運動エネルギーに依存し、初期のDNA損傷の誘発に本質的に関係する。そのため、モンテカルロシミュレーションに基づくDNA損傷収率の推定は、世界的に関心の高い研究トピックとなっている。本研究では、放射線輸送計算コードであるPHITS飛跡構造解析モードの応用、ならびに電子線用に開発された単純なモデルの陽子線への適用により、陽子線エネルギーと一本鎖切断(SSB)、二本鎖切断(DSB)および複雑なDSBの収量との関係性を評価した。その結果、PHITSに基づく推定結果は、約30keV/m以下の線エネルギー付与(LET)の特性を有する陽子線により発生する様々なタイプのDNA損傷収量の実験値や他コードの推定値を正確に再現することが分かった。これらの結果は、PHITSに実装されている現在のDNA損傷モデルが、1MeV未満の非常に低いエネルギーを除いて、陽子照射後に誘発されるDNA損傷収量を推定するのに十分であることを示唆している。
平田 悠歩; 甲斐 健師; 小川 達彦; 松谷 悠佑; 佐藤 達彦
Japanese Journal of Applied Physics, 61(10), p.106004_1 - 106004_6, 2022/10
被引用回数:0 パーセンタイル:0(Physics, Applied)検出器や半導体メモリなどのSiデバイスにおいて、パルス波高欠損やソフトエラーなどの放射線影響が問題となっている。このような放射線影響のメカニズムを解明するためには、放射線による精密なエネルギー付与情報が必要である。そこで、Siにおける電子線のエネルギー付与をナノスケールで計算できる電子線飛跡構造解析機能を開発しPHITSに実装した。開発した機能の検証として電子の飛程や付与エネルギー分布を計算したところ、既報のモデルと一致することを確認した。また、一つのキャリア生成に必要なエネルギー(値)について、実験値を再現する二次電子生成のエネルギー閾値は2.75eVであることを見出すとともに、このエネルギー閾値は解析的に計算された結果および実験値と一致することがわかった。本研究で開発した電子線飛跡構造解析機能はSiデバイスに対する放射線影響の調査に応用することが期待される。
Papadopoulos, A.*; Kyriakou, I.*; 松谷 悠佑; Incerti, S.*; Daglis, I. A.*; Emfietzoglou, D.*
Applied Sciences (Internet), 12(18), p.8950_1 - 8950_20, 2022/09
被引用回数:0 パーセンタイル:0(Chemistry, Multidisciplinary)線質係数(Q)は、放射線により発生する確率的影響(発がんリスク)を評価する際に使用される指標である。一般的に、Q値は線エネルギー付与(LET)により決定できるが、より精巧なアプローチでは、分析モデルまたはモンテカルロシミュレーションによって計算される微視的線量付与(y分布)に基づき算出される。本研究では、線輸送とエネルギー損失効果の両方を考慮した様々な従来分析モデルを用いてy分布を計算し、1-250MeVの陽子線エネルギーに対するQ値を評価した。ICRP report 60において推奨されるLETに基づく決定法とy分布に基づく精巧な決定法を比較した結果、推奨法は約100MeV未満の陽子線のQ値を過小評価することがわかった。また、y分布を算出する手法として、従来の分析モデルが、モンテカルロシミュレーションの実用的な代替手段となる可能性を示唆した。今後、様々な最新の物理モデルを考慮したシミュレーションコード(Geant4-DNAやPHITS)によるy分布を比較し、高精度なリスク評価を目指してQ値に関する更なる解析を進める予定である。
佐藤 達彦; 松谷 悠佑; 浜田 信行*
International Journal of Radiation Oncology, Biology, Physics, 114(1), p.153 - 162, 2022/09
被引用回数:1 パーセンタイル:68.37(Oncology)放射線皮膚反応に対する生物学的効果比(RBE)の評価は、粒子線治療やホウ素中性子補足療法(BNCT)の治療計画、及びJCO事故のような中性子を含む緊急時被ばくや宇宙飛行士被ばくの放射線防護指針を決定する際、極めて重要となる。本研究では、マイクロドジメトリに基づく放射線皮膚反応に対するRBE評価モデルを開発し、そのモデルパラメータを過去数10年に渡って発表されてきた細胞実験や動物実験結果より決定した。その結果、細胞実験から推定したRBEは、動物実験から推定した値と比べて低い傾向にあることが分かった。また、開発したモデルを用いて様々な放射線被ばくに対する皮膚反応RBEの平均値及びその誤差範囲を計算した結果、20-30年前に国際放射線防護委員会(ICRP)や米国放射線審議会(NCRP)が評価した値は、最新の実験値とも整合性があることが明らかになった。本成果は、粒子線治療やBNCTの治療計画のみならず、放射線防護に用いる皮膚反応RBEの奨励値を決定する際にも有用となる。
谷内 淑恵*; 甲斐 健師; 松谷 悠佑; 平田 悠歩; 吉井 勇治*; 伊達 広行*
Scientific Reports (Internet), 12, p.16412_1 - 16412_8, 2022/09
被引用回数:1 パーセンタイル:0(Multidisciplinary Sciences)近年、腫瘍を見ながら治療する磁場共鳴誘導放射線治療法(MRgRT)が開発され、その装置が医療施設へ導入され始めている。MRgRTにおいて、ローレンツ力は荷電粒子によるマクロな線量分布を変調することが知られているが、生体内におけるミクロな放射線飛跡構造や初期DNA損傷に対するローレンツ力の影響は未解明のままである。本研究では、PHITSを利用し、静磁場が印加された生体内の電子線飛跡構造を模擬し、その結果から生物学的効果の特徴を推定した。本研究により、腫瘍サイズのマクロな線量分布はローレンツ力に強く依存する一方、分子サイズのミクロなDNA損傷は、ローレンツ力の影響を受けない数10eV未満の二次電子がDNAの二本鎖切断に起因することを明らかにした。本研究から得られた新たな知見はMRgRTの発展に大きく寄与することが期待される。
松谷 悠佑; 楠本 多聞*; 谷内 淑恵*; 平田 悠歩; 三輪 美沙子*; 石川 正純*; 伊達 広行*; 岩元 洋介; 松山 成男*; 福永 久典*
AIP Advances (Internet), 12(2), p.025013_1 - 025013_9, 2022/02
被引用回数:1 パーセンタイル:59.23(Nanoscience & Nanotechnology)ホウ素中性子捕捉療法(Boron Neutron Capture Therapy: BNCT)は、腫瘍細胞選択的にホウ素薬剤を集積させ、Bと熱中性子の核反応から発生する
線やLiイオンを利用して、腫瘍細胞に効率的に治療する放射線療法である。近年開発の進む加速器型(病院設置型)中性子源により、将来的に数多くの医療施設でBNCTが普及すると期待されている。加速器型中性子源で、BNCTに用いる熱外中性子は
Li(p,n)
Be反応により生成する。様々な種類の放射線や粒子の挙動を模擬できる放射線輸送計算コードPHITSでは、近年の改良により、日本国内の評価済み核データライブラリー(JENDL-4.0/HE)を使用して
Li(p,n)
Be反応からの中性子生成の推定が可能となった。本研究では、病院設置型BNCTの治療効果の評価へ向けて、PHITSで考慮されている中性子発生断面積や中性子エネルギー分布の基礎的検証を行った。さらに、熱中性子や反跳陽子の発生数 を試算し、BF
ガス計数管や固体飛跡検出器CR-39の測定値と比較した。その結果、これらの検証により、PHITSコードがLiターゲットを使用して加速器から生成された中性子を正確に予測できることを確認した。この成果は、PHITSコードが加速器型中性子場の正確な評価と加速器型BNCTの治療効果の予測に有用であることを示すものである。
松谷 悠佑; 浜田 信行*; 谷内 淑恵*; 佐藤 志彦; 石川 正純*; 伊達 広行*; 佐藤 達彦
Cancers (Internet), 14(4), p.1045_1 - 1045_15, 2022/02
被引用回数:4 パーセンタイル:93.76(Oncology)福島原子力発電所の事故後、不溶性の放射性セシウム含有微粒子(Cs-BMP)が発見された。放射性Cs摂取後の内部被ばくのリスクに関しては、従来、可溶性Csが全身へ均一に分布した条件を想定した臓器線量から推定されてきた。一方、Cs-BMPは正常組織に長期的に付着し、慢性的な不均一被ばくを引き起こす可能性がある。本研究では、Cs-BMPによる不均一被ばく後の放射線影響の解明へ向けて、炎症応答とDNA損傷誘発との関係を調査した。炎症性シグナル経路であるNF-B p65とCOX-2に焦点を当てた実験により、
線による均一被ばくと比較して、Cs-BMPの近位の細胞ではNF-
B p65が活性化される一方、遠位の細胞ではNF-
B p65と同時にCOX-2も有意に活性化する傾向を観察した。また、炎症性シグナルの阻害剤を用いた実験により、Cs-BMP近位の細胞の放射線感受性の低下と遠位の細胞の放射線感受性の増強の双方に対し、炎症性シグナルの活性が深く関与することがわかった。これらの結果は、Cs-BMPによる被ばく後の放射線影響は、従来の均一被ばくに基づく推定とは異なることを示唆している。
松谷 悠佑; 甲斐 健師; 佐藤 達彦; 小川 達彦; 平田 悠歩; 吉井 勇治*; Parisi, A.*; Liamsuwan, T.*
International Journal of Radiation Biology, 98(2), p.148 - 157, 2022/02
被引用回数:6 パーセンタイル:74.47(Biology)放射線による生物学的効果の研究を計算手法で進める場合、細胞内およびDNAスケールにおいて生体と等価物質である液体水中の各原子相互作用を明示的に考慮して、飛跡構造を解析することが重要となる。粒子・重イオン輸送計算コードPHITSは、独自の電子線飛跡構造解析モード(etsmode)ならびに、陽子・炭素イオンを模擬可能な世界的に有名なKURBUCアルゴリズムを使用することで、飛跡構造を詳細に計算できる。本研究では、電子線,陽子線,炭素線に関するPHITSの飛跡構造解析モードについて、物理的な特性(飛程・動径線量・微視的エネルギー付与)を評価し、文献の実験データや他のシミュレーションの文献値と一致することを検証した。また、電子線を対象に、早期の生物影響であるDNA一本鎖切断やDNA二本鎖切断、さらには複雑なDNA損傷であるクラスター損傷の発生数を推定し、電子線の入射エネルギー依存性を評価した。その結果、DNA損傷タイプはナノメートルスケールの電離励起の空間パターンに深く関与し、約500eVの電子線で複雑なDNA損傷の収量が大きくなることを明らかにした。PHITS飛跡構造解析モードの開発や検証並びに放射線生物研究へ応用した本成果は、放射線による生物学的効果の発生メカニズムの解明へ向けた研究を発展させるものである。
福井 呂満*; 嵯峨 涼*; 松谷 悠佑; 富田 和男*; 桑原 義和*; 大内 健太郎*; 佐藤 友昭*; 奥村 一彦*; 伊達 広行*; 福本 学*; et al.
Scientific Reports (Internet), 12(1), p.1056_1 - 1056_12, 2022/01
被引用回数:3 パーセンタイル:92.7(Multidisciplinary Sciences)一回当たり2Gyの線量を30日以上にわたり分割照射する放射線療法では、照射後に生存したがん細胞が放射線耐性を獲得し、予後不良を引き起こすことが知られる。この放射線耐性は、照射後に増加する癌幹細胞数に起因すると実験的に解釈されている。しかし、細胞実験による測定手法は、癌幹細胞に係る放射線応答(DNA損傷や細胞死発生メカニズム)の解明に限界があり、放射線へ耐性を獲得するメカニズムは未だ不明である。そこで、分割照射により樹立した放射線への耐性を持つ細胞を使用した従来のin vitro試験に加え、癌幹細胞数とそのDNA損傷応答を理論的に考慮して腫瘍生存率を予測可能する数理モデルであるintegrated microdosimetric-kinetic (IMK) modelを開発し、分割放射線療法後に腫瘍が獲得する放射線耐性のメカニズムを研究した。その結果、照射後に獲得される放射線耐性には、癌幹細胞含有率の増加に加えて、非癌幹細胞のDNA修復能力の向上が深く関与していることがわかった。これら2つの応答をIMK modelに考慮することで、獲得した放射線耐性が異なる様々な細胞株において、様々な照射条件下で発生する細胞死の実測値の再現に成功した。本成果により、放射線照射後の腫瘍が獲得する放射線耐性獲得メカニズムに関する正確な理解、これに基づく治療効果の予測技術の高精度化が期待される。
小川 達彦; 平田 悠歩; 松谷 悠佑; 甲斐 健師
Scientific Reports (Internet), 11(1), p.24401_1 - 24401_10, 2021/12
被引用回数:5 パーセンタイル:69.76(Multidisciplinary Sciences)入射荷電粒子が二次電子を生じる過程を明示的に計算する飛跡構造解析計算は、放射線生物影響,材料照射効果,放射線検出などの研究にとって重要な技術であり、これまで多くの研究に応用されてきた。しかし、従来の飛跡構造解析計算は標的物質の誘電関数を基に行われており、水以外の誘電関数はあまりよく知られていない。そこで本研究では誘電関数を使うことなく、二次電子エネルギー分布の系統式と阻止能を基に飛跡構造解析計算を行う手法を考案した。これにより、誘電関数の測定値の有無にかかわらず、任意の物質で飛跡構造解析計算を実行することを可能とした。まずこの手法で、標準的な検証データである陽子の水中の飛程や、エネルギー付与の動径方向分布を計算したところ、従来のコードや実験値とよく一致した。そこで、従来のコードが扱えなかった生体等価ガスを例にとり、同ガス中でのlineal energyを本研究で開発した手法により計算したところ、これも実験値の分布をよく再現し、水として近似した場合とは明確な差がみられた。このモデルは原子力機構の放射線輸送計算コードであるPHITS Ver3.25以降に実装され、任意物質に適用できる世界初の汎用飛跡構造解析コードとしてユーザーに提供される予定である。
松谷 悠佑; 甲斐 健師; 小川 達彦; 平田 悠歩; 佐藤 達彦
放射線化学(インターネット), (112), p.15 - 20, 2021/11
Particle and Heavy Ion Transport code System (PHITS)は、放射線挙動を模擬する汎用モンテカルロコードであり、原子力分野のみならず工学,医学,理学などの多様な分野で広く利用されている。PHITSは2010年に公開されて以降、機能拡張や利便性向上のために改良が進められてきた。今日までに、電子線,陽電子線,陽子線,炭素線の4種類の荷電粒子を対象として、液相水中における個々の原子との反応を模擬できる飛跡構造解析モードの開発を進めてきた。本モードの開発により、DNAスケールまで分解した微視的な線量付与の計算が可能となった。加えて、飛跡構造解析モードの高精度化へ向けて、任意物質中において多様な粒子タイプに適用可能な汎用的飛跡構造解析モードの開発も進められている。本稿で解説するPHITS飛跡構造解析モードに関するこれまでの開発経緯と将来展望により、PHITSコードの原子物理学,放射線化学,量子生命科学分野への応用がより一層期待される。
福永 久典*; 松谷 悠佑
放射線生物研究, 56(2), p.208 - 223, 2021/06
ホウ素中性子捕捉療法(Boron Neutron Capture Therapy, BNCT)は、「腫瘍細胞選択的にホウ素薬剤を集積させ、Bと熱中性子の核反応から生成される短飛程の
線やLiイオンを利用して、腫瘍細胞に効率的に線量を集中させる」という放射線治療である。最近開発された加速器型中性子線源の登場により、近い将来、BNCTは多くの医療施設で利用可能になることが期待されている。BNCTでは、静脈注射によってホウ素薬剤を腫瘍部に取り込ませた後、比較的長い時間をかけて中性子線照射を行うため、照射中の腫瘍部ホウ素濃度分布が時空間的に不均一に変化することが判っている。したがって、その物理学的な特性と薬理学・生物学的な特性の両方がBNCT治療効果に影響していると予想されるが、このような特性を十分に考慮した予測モデルは現在も開発途上にある。本稿で解説するBNCT治療効果予測モデルの開発に関する歴史的経緯と将来展望は、放射線物理学,薬理学,生物学,医学分野の間をつなぐ学際的な研究アプローチによるシナジー効果を生み、新しいBNCTの時代を切り拓くことが期待される。
松谷 悠佑; McMahon, S. J.*; Butterworth, K. T.*; 内城 信吾*; 奈良 一志*; 谷内 淑恵*; 嵯峨 涼*; 石川 正純*; 佐藤 達彦; 伊達 広行*; et al.
Physics in Medicine & Biology, 66(7), p.075014_1 - 075014_11, 2021/04
被引用回数:2 パーセンタイル:26.93(Engineering, Biomedical)腫瘍内の低酸素細胞は放射線抵抗性を示し、分割放射線療法の悪性進行を引き起こす。不均質な酸素条件下に存在する腫瘍に線量を付与させる場合、照射野内と照射野外の細胞間で伝達される細胞間シグナリングにより、両者の放射線感受性が変化することが知られている。しかしながら、強度変調照射下において低酸素症が放射線感受性へ与える影響については不明である。本研究では、2種類のがん細胞株(DU145とH1299)を使用して、低酸素症が、照射野内外の細胞に対する放射線感受性(DNA損傷と細胞死)へもたらす影響を研究した。細胞実験の結果から、低酸素症は照射野外の放射線感受性へ明らかに影響を与える一方、その低酸素症の影響の程度(酸素増感効果比)は照射野内細胞よりも小さいことがわかった。DNA損傷ならびに細胞死の両評価対象に対して、照射野外で低減される放射線感受性について一貫した傾向が示された。これらの成果は、強度変調放射線を活用して低酸素下の腫瘍を照射する際の治療計画時において、放射線誘発の細胞間シグナリングを考慮する重要性を示すものである。
嵯峨 涼*; 松谷 悠佑; 高橋 玲*; 長谷川 和輝*; 伊達 広行*; 細川 洋一郎*
Scientific Reports (Internet), 11(1), p.8258_1 - 8258_10, 2021/04
被引用回数:3 パーセンタイル:60.67(Multidisciplinary Sciences)ヒアルロン酸合成材4-メチルウンベリフェロン(4-MU)は、X線治療における放射線増感剤の候補として知られる。そのような4-MU投与下での放射線治療効果はin vitro試験により研究がおこなわれてきたが、放射線増感に関するメカニズムは未だ不明である。本研究では、細胞実験に加えて、モデル推定による理論解析を行い、4-MU投与下の放射線増感メカニズムを研究した。先ず、細胞実験により、4-MU投与とX線照射を組み合わせた治療時の腫瘍細胞(HT1080)の生存率を測定した。一方、4-MU投与による薬理学的効果をモデル化し、4-MU投与とX線照射による相乗効果を理論的に分析した。その結果から、4-MU投与による放射線増感効果は、約4Gyの中間線量範囲で最大となり、細胞間コミュニケーションの関与が示された。さらに、4-MU投与下において、DNA損傷の発生に関連する酸化ストレスレベルが優位に増加し、細胞間シグナルの阻害剤を加えることで放射線増感効果が抑制されることが分かった。本成果により、4-MU投与とX線照射による相乗効果は、細胞間コミュニケーションに起因し、従来のX線治療よりも効率的な腫瘍制御が見込めることが示された。
松谷 悠佑; 甲斐 健師; 佐藤 達彦; Liamsuwan, T.*; 佐々木 恒平*; Nikjoo, H.*
Physics in Medicine & Biology, 66(6), p.06NT02_1 - 06NT02_11, 2021/03
被引用回数:11 パーセンタイル:93.42(Engineering, Biomedical)汎用放射線輸送計算コードPHITSは、広範なエネルギーの様々な粒子の物質中における挙動を模擬できる計算コードである。最新版PHITS version 3.20では、世界的に最もよく検証された飛跡構造計算コードの一つであるKURBUCのアルゴリズムに基づいて、一次イオン(陽子・炭素イオン)の挙動、二次粒子生成(1meV1MeVのエネルギーを有する電子)の計算を可能とするイオン飛跡構造計算モード(PHITS-KURBUCモード)を開発、実装した。本研究では、陽子及び炭素イオンの挙動に関して、PHITS-KURBUCモードで得られる飛程,動径線量,微視的エネルギー付与分布について、文献で報告される推奨値や実測値と比較することで検証した。この検証から、KURBUCコードのPHITSへの組み込みに成功したことを確認した。さらに、従来からPHITSで対象としていたより巨視的な空間領域の計算機能とPHITS-KURBUCによる微視的計算モードの相乗効果により、拡大ブラッグピークを用いた陽子線治療などの複雑な放射線場下における微視的エネルギー付与分布の詳細な計算が可能となった。本研究の成果は、放射線物理,放射線防護,医学物理,放射線生物学をはじめとした次世代の放射線研究手法の発展に貢献するものである。
Parisi, A.*; 佐藤 達彦; 松谷 悠佑; 加瀬 優紀*; Magrin, G.*; Verona, C.*; Tran, L.*; Rosenfeld, A.*; Bianchi, A.*; Olko, P.*; et al.
Physics in Medicine & Biology, 65(23), p.235010_1 - 235010_20, 2020/12
被引用回数:17 パーセンタイル:89.29(Engineering, Biomedical)ミクロ線量分布からV79細胞の10%生存率をエンドポイントとした生物学的効果比(RBE)加重線量を推定する新たな生物学的加重関数を開発した。その開発には、Hから
Uまでの様々なイオン照射に対するV79細胞生存率を格納したデータベースと、粒子・重イオン輸送計算コードPHITSのマイクロドジメトリ機能を用いて計算したミクロ線量分布が活用された。開発した生物学的加重関数の信頼性は、他のモデルによる計算結果や種々のイオンに関する実験データとの比較により検証した。本成果により、実験により評価したミクロ線量分布からRBE加重線量を誰でも容易に推定可能となり、粒子線治療場におけるマイクロドジメトリ測定の有用性が高まった。