検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Plastic constraint correction factor $$chi$$ for brittle fracture in ductile-brittle transition temperature region

北条 公伸*; 廣田 貴俊*; 名越 康人*; 深堀 拓也*; 清水 万真*; 下平 昌樹; 小川 琢矢*; 八代醍 健志*; 大畑 充*; 南 二三吉*

Proceedings of ASME 2024 Pressure Vessels & Piping Conference (PVP 2024) (Internet), 9 Pages, 2024/07

加圧熱衝撃事象における延性-脆性遷移温度域の原子炉圧力容器の破壊挙動を予測するため、日本溶接協会規格(WES)として塑性拘束補正係数$$chi$$を導入した評価手法の策定を目指している。WESでは当該評価手法として、簡易法と詳細法の2種類を定める予定である。簡易法による塑性拘束補正係数$$chi$$の算出では、材料の降伏応力、降伏比、ワイブル形状母数をパラメータとした式を用いる。また、塑性拘束補正係数$$chi$$は評価対象の欠陥寸法や構造物の板厚にも依存する。本研究では、様々な原子炉圧力容器を対象として簡易法による塑性拘束補正係数$$chi$$を求めるため、構造物の板厚や亀裂寸法、降伏比やワイブル形状母数を変化させた感度解析を実施した。また、加圧熱衝撃事象は温度変化を伴う事象であることから、ワイブル形状母数等の温度依存性に関する検討も行った。

論文

Benchmark analysis by Beremin model and GTN model in CAF subcommittee

廣田 貴俊*; 名越 康人*; 北条 公伸*; 岡田 裕*; 高橋 昭如*; 勝山 仁哉; 上田 貴志*; 小川 琢矢*; 八代醍 健志*; 大畑 充*; et al.

Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 9 Pages, 2021/07

In order to establish a guideline for fracture evaluation by considering plastic constraint in the ductile-brittle transition temperature (DBTT) region, the CAF (Constraint-Based Assessment of Fracture in Ductile-Brittle Transition Temperature Region) subcommittee has been launched in 2018 in the Japan Welding Engineering Society. In the committee, fracture tests are conducted using C(T), SE(B), and 50mm-thick flat plate with a surface flaw subjected to bending load or tensile load to verify fracture evaluation methods. Since simulation results are easily affected by analysis conditions, benchmark analysis is essential for the potential users of the guideline. Therefore, benchmark analyses are executed on brittle and ductile damages by Beremin and Gurson-Tvergaard-Needleman (GTN) models implemented in the finite element (FE) codes. The benchmark analyses are carried out in four steps; Step 0 is to confirm the output of FE codes in each member with the same input data and the same FE model. Step 1 is to confirm the result of Weibull stress analysis for C(T) specimens tested at -125$$^{circ}$$C. The Weibull parameter, m, was fixed in this step. At step 2, sensitivity analyses are conducted on Weibull stresses in different conditions. The outputs by the GTN model are also confirmed. At the final step, the fracture simulation will be run for flat plate specimens with less plastic constraint than the standard fracture toughness specimen. As the results of the benchmark analyses up to step 2, a significant difference is not observed in the Weibull stress computed by committee members with the same input data and FE model and it is confirmed that the effects of element type, nonlinear deformation theory employed in FE analysis. For the calculation of the Weibull parameter m by using the fracture toughness test results and the developed programs by committee members, the converged values of m show good agreement among them.

2 件中 1件目~2件目を表示
  • 1