Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 32

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-3, JRR-4 and JRTF facilities, 2

Tobita, Minoru*; Goto, Katsunori*; Omori, Takeshi*; Osone, Osamu*; Haraga, Tomoko; Aono, Ryuji; Konda, Miki; Tsuchida, Daiki; Mitsukai, Akina; Ishimori, Kenichiro

JAEA-Data/Code 2023-011, 32 Pages, 2023/11

JAEA-Data-Code-2023-011.pdf:0.93MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to the study of radioactivity concentration evaluation methods for radioactive wastes generated from nuclear research facilities, we collected and analyzed concrete samples generated from JRR-3, JRR-4 and JAERI Reprocessing Test Facility. In this report, we summarized the radioactivity concentrations of 23 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{137}$$Cs, $$^{133}$$Ba, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{235}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2021-2022.

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-2, JRR-3 and Hot laboratory

Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; Konda, Miki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2023-002, 81 Pages, 2023/05

JAEA-Data-Code-2023-002.pdf:3.0MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 20 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2020.

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-3, JRR-4 and JRTF facilities

Tobita, Minoru*; Konda, Miki; Omori, Takeshi*; Nabatame, Tsutomu*; Onizawa, Takashi*; Kurosawa, Katsuaki*; Haraga, Tomoko; Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; et al.

JAEA-Data/Code 2022-007, 40 Pages, 2022/11

JAEA-Data-Code-2022-007.pdf:1.99MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete, ash, ceramic and brick samples generated from JRR-3, JRR4 and JRTF facilities. In this report, we summarized the radioactivity concentrations of 24 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{133}$$Ba, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2020-2021.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR, JRR-3 and JRR-4 Facilities

Tsuchida, Daiki; Mitsukai, Akina; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2022-004, 87 Pages, 2022/07

JAEA-Data-Code-2022-004.pdf:6.73MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until by the beginning of disposal. In order to contribute to this work, we collected and analyzed samples generated from JPDR, JRR-3 and JRR-4. In this report, radioactivity concentrations of 20 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) were determined based on radiochemical analysis and summarized as basic data for the study of evaluation method of radioactive concentration.

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JPDR Facility

Tobita, Minoru*; Haraga, Tomoko; Endo, Tsubasa*; Omori, Hiroyuki*; Mitsukai, Akina; Aono, Ryuji; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2021-013, 30 Pages, 2021/12

JAEA-Data-Code-2021-013.pdf:1.47MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JPDR facility. In this report, we summarized the radioactivity concentrations of 21 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2018-2019.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-3 and JPDR facilities

Tsuchida, Daiki; Haraga, Tomoko; Tobita, Minoru*; Omori, Hiroyuki*; Omori, Takeshi*; Murakami, Hideaki*; Mitsukai, Akina; Aono, Ryuji; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2020-022, 34 Pages, 2021/03

JAEA-Data-Code-2020-022.pdf:1.74MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JRR-3 and JPDR. In this report, we summarized the radioactivity concentrations of 22 radionuclides($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{133}$$Ba, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR and JRR-4

Aono, Ryuji; Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2020-006, 70 Pages, 2020/08

JAEA-Data-Code-2020-006.pdf:2.59MB

Radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried at the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JPDR and JRR-4. In this report, we summarized the radioactivity concentrations of 19 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of those samples.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from Post Irradiation Examination Facility

Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2019-012, 70 Pages, 2020/02

JAEA-Data-Code-2019-012.pdf:3.86MB

It is necessary to establish practical evaluation methods to determine radioactivity concentration of radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from Post Irradiation Examination Facility. In this report, we summarized the radioactivity concentrations of 19 radionuclides which were obtained from radiochemical analysis of those samples.

JAEA Reports

Study on the evaluation methodology of the radioactivity concentration in low-level radioactive wastes generated from post irradiation examination facility

Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Technology 2019-015, 52 Pages, 2019/11

JAEA-Technology-2019-015.pdf:2.46MB

In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. In this work, we studied the evaluation method of radioactivity concentration based on radiochemical analysis data (H-3, C-14, Cl-36, Co-60, Ni-63, Sr-90, Mo-93, Nb-94, Tc-99, Ag-108m, Sn-126, I-129, Cs-137, Eu-152, Eu-154, U-233+234, U-238, Pu-238, Pu-239+240, Pu-241, Am-241, Am-243, Cm-244) which was generated from research facility Hot Laboratory. As a result of examining the application of the scaling factor method, the correlation with Key-nuclide in some nuclides which are Sr-90, I-129, Eu-154, U-233+234, Pu-238, Pu-239+240, Am-241, Cm-244 confirmed by the correlation coefficient and t-test. In the present radiochemical analysis data, the mean activity concentration method can be applied to all nuclides which could not be applied to the scaling factor method H-3, C-14, Cl-36, Ni-63, Mo-93, Nb-94, Tc-99, Ag-108m, Sn-126, Eu-152, U-238, Pu-241 and Am-243. Ni-63, Tc-99, Eu-152 and U-238 could be applied to the scaling factor method with getting several additional data, this study will be continued to review for the practical evaluation method.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-2 and JRR-3 facilities

Haraga, Tomoko; Shimomura, Yusuke; Mitsukai, Akina; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2019-004, 48 Pages, 2019/10

JAEA-Data-Code-2019-004.pdf:4.67MB

In the future, radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2 and JRR-3. In this report, we summarized the radioactivity concentrations of 19 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of those samples.

Journal Articles

First ionization potentials of Fm, Md, No, and Lr; Verification of filling-up of 5f electrons and confirmation of the actinide series

Sato, Tetsuya; Asai, Masato; Borschevsky, A.*; Beerwerth, R.*; Kaneya, Yusuke*; Makii, Hiroyuki; Mitsukai, Akina*; Nagame, Yuichiro; Osa, Akihiko; Toyoshima, Atsushi; et al.

Journal of the American Chemical Society, 140(44), p.14609 - 14613, 2018/11

 Times Cited Count:32 Percentile:70.90(Chemistry, Multidisciplinary)

The first ionization potential (IP$$_1$$) yields information on valence electronic structure of an atom. IP$$_1$$ values of heavy actinides beyond einsteinium (Es, Z = 99), however, have not been determined experimentally so far due to the difficulty in obtaining these elements on scales of more than one atom at a time. Recently, we successfully measured IP$$_1$$ of lawrencium (Lr, Z = 103) using a surface ionization method. The result suggests that Lr has a loosely-bound electron in the outermost orbital. In contrast to Lr, nobelium (No, Z = 102) is expected to have the highest IP$$_1$$ among the actinide elements owing to its full-filled 5f and the 7s orbitals. In the present study, we have successfully determined IP$$_1$$ values of No as well as fermium (Fm, Z = 100) and mendelevium (Md, Z = 101) using the surface ionization method. The obtained results indicate that the IP$$_1$$ value of heavy actinoids would increase monotonically with filling electrons up in the 5f orbital like heavy lanthanoids.

Journal Articles

Extraction behavior of Mo and W from H$$_{2}$$SO$$_{4}$$ and HF/HCl solutions into toluene with Aliquat336; Sulfate and fluoride complex formation of Mo and W towards chemical studies of seaborgium (Sg)

Toyoshima, Atsushi; Mitsukai, Akina; Tsukada, Kazuaki; Oe, Kazuhiro*; Haba, Hiromitsu*; Komori, Yukiko*; Murakami, Masashi; Kaneya, Yusuke*; Sato, Daisuke*; Asai, Masato; et al.

Journal of Radioanalytical and Nuclear Chemistry, 317(1), p.421 - 430, 2018/07

 Times Cited Count:3 Percentile:27.63(Chemistry, Analytical)

We have studied extraction behavior of group-6 elements Mo and W to search for suitable conditions for an on-line extraction experiment of their heavier homolog, seaborgium (Sg). Batch-wise extraction of carrier-free radiotracers $$^{93m}$$Mo and $$^{177,179,181}$$W were carried out from 0.10 - 8.6 M H$$_{2}$$SO$$_{4}$$ and 1.0$$times$$10$$^{-4}$$ - 5.0 M HF/1.0 M HCl into toluene with a quaternary ammonium compound, Aliquat336. Anionic sulfate complexes of Mo and W with charge - 2 were extracted with Aliquat336 from H$$_{2}$$SO$$_{4}$$ solutions with concentrations of [H$$_{2}$$SO$$_{4}$$] $$>$$ 2 M. In HF/1.0 M HCl, oxyfluoro complexes of Mo and W with charge - 1 were interpreted to be formed and extracted with Aliquat336. From these results, favorable conditions for the extraction of Sg are discussed.

Journal Articles

Vacuum chromatography of Tl on SiO$$_{2}$$ at the single-atom level

Steinegger, P.*; Asai, Masato; Dressler, R.*; Eichler, R.*; Kaneya, Yusuke*; Mitsukai, Akina*; Nagame, Yuichiro; Piguet, D.*; Sato, Tetsuya; Sch$"a$del, M.; et al.

Journal of Physical Chemistry C, 120(13), p.7122 - 7132, 2016/04

 Times Cited Count:25 Percentile:58.69(Chemistry, Physical)

A new experimental method "vacuum chromatography" has been developed to measure adsorption enthalpy of superheavy elements, and its feasibility has been examined using short-lived thallium isotopes. The short-lived thallium isotopes were produced at the JAEA tandem accelerator. The thallium ion beam prepared with an on-line isotope separator which ionized and mass-separated the thallium isotopes was injected into an isothermal vacuum chromatography apparatus. A temperature-dependent adsorption property of thallium atom on SiO$$_{2}$$ surface were measured. The adsorption enthalpy of thallium was determined to be 158 kJ/mol. The thallium is a homolog of element 113. Thus, the vacuum chromatography developed in this study enables us to perform chemical experiments for short-lived superheavy elements with half-lives of a order of one second.

Oral presentation

First ionization energies of heavy actinides

Nagame, Yuichiro; Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke*; Makii, Hiroyuki; Mitsukai, Akina; Osa, Akihiko; Sch$"a$del, M.*; Toyoshima, Atsushi; Tsukada, Kazuaki; et al.

no journal, , 

Oral presentation

Electrolytic reduction of Mo and W as lighter homologues of seaborgium

Toyoshima, Atsushi; Miyashita, Sunao*; Oe, Kazuhiro*; Kitayama, Yuta*; Lerum, H. V.*; Goto, Naoya*; Kaneya, Yusuke; Komori, Yukiko*; Mitsukai, Akina*; Vascon, A.; et al.

no journal, , 

no abstracts in English

Oral presentation

Measurement of the first ionization energy of nobelium (No, $$Z$$ = 102)

Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke; Tsukada, Kazuaki; Toyoshima, Atsushi; Takeda, Shinsaku; Mitsukai, Akina*; Nagame, Yuichiro; Ichikawa, Shinichi; Makii, Hiroyuki; et al.

no journal, , 

We successfully determined the first ionization energy (IE) of nobelium (No, $$Z$$ = 102) using a short-lived No isotope, $$^{257}$$No produced in the$$^{248}$$Cm($$^{13}$$C, 4n) reaction, based on the IE dependence of the ionization efficiency in a surface ionization process. The IE value of No was evaluated to be 6.6 eV. This value is in a good agreement with the value which has been estimated by an extrapolation from those of the lighter actinide elements, 6.65 eV.

Oral presentation

Adsorption of lawrencium on a metallic tantalum surface at high temperature

Kaneya, Yusuke*; Asai, Masato; Sato, Tetsuya; Tomitsuka, Tomohiro; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina; Makii, Hiroyuki; Hirose, Kentaro; Osa, Akihiko; et al.

no journal, , 

To study the influence of the valence 7p$$_{1/2}$$ electronic orbital on chemical properties of lawrencium, a measurement of the adsorption enthalpy of lawrencium was carried out. A new method using a surface ionization technique coupled to an on-line isotope separator was developed, which enabled one to measure temperature dependence of lawrencium surface adsorption on a metallic tantalum surface at high temperature up to 2800 K. The temperature dependences of adsorption of lawrencium as well as various lanthanide elements were investigated with this method, and the adsorption enthalpy of lawrencium was successfully extracted.

Oral presentation

Adsorption behavior of lawrencium on a tantalum surface

Sato, Tetsuya; Kaneya, Yusuke*; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Osa, Akihiko; Makii, Hiroyuki; Hirose, Kentaro; Nagame, Yuichiro; et al.

no journal, , 

Our experimental results on the first ionization potential measurement of lawrencium (Lr, element 103) have strongly suggested that the Lr atom has a [Rn]$$7s^25f^{14}7p_{1/2}$$ configuration as a result of the influence of strong relativistic effects. The configuration is different from that expected from the lanthanide homologue, lutetium (Lu). According to a semi-empirical consideration, it is expected that the change of the electronic configuration leads higher volatility of Lr than that of Lu. In this work, adsorption behaviors of Lr and various short-lived rare earth isotopes on a tantalum surface were investigated via observation of their surface ionization efficiencies. It was found that Lr would behave like low volatile rare earth elements such as Lu contrary to the semi-empirical expectation.

Oral presentation

Discovery of $$^{234m}$$Np isomer

Kamada, Hiroki*; Asai, Masato; Tsukada, Kazuaki; Sato, Tetsuya; Toyoshima, Atsushi; Nagame, Yuichiro; Mitsukai, Akina; Tomitsuka, Tomohiro*; Andreyev, A. N.; Nishio, Katsuhisa; et al.

no journal, , 

Existence of the previously unknown isomer $$^{234m}$$Np was discovered for the first time. $$^{234m}$$Np was produced by using the JAEA tandem accelerator. Short-lived reaction products were mass-separated by the on-line isotope separator ISOL, and $$gamma$$ and X rays originating from the decay of $$^{234m}$$Np were observed. The half-life of $$^{234m}$$Np was determined to be approximately 9 min, and $$^{234m}$$Np was found to decay via the EC decay as well as the isomeric transition. On the basis of the observed $$gamma$$ and X rays and the half-life value, we have evaluated level energy, spin-parity, and proton-neutron configuration of $$^{234m}$$Np.

Oral presentation

Adsorption behavior of lawrencium (Lr, Z = 103) on a tantalum surface

Sato, Tetsuya; Kaneya, Yusuke*; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Osa, Akihiko; Makii, Hiroyuki; Hirose, Kentaro; Nagame, Yuichiro; et al.

no journal, , 

Our experimental results on the first ionization potential measurement of lawrencium (Lr, element 103) have strongly suggested that the Lr atom has a [Rn]$$7s^25f^{14}7p_{1/2}$$ configuration as a result of the influence of strong relativistic effects. The configuration is different from that expected from the lanthanide homologue, lutetium (Lu). According to a semi-empirical consideration, it is expected that the change of the electronic configuration leads higher volatility of Lr than that of Lu. In this work, adsorption behaviors of Lr and various short-lived rare earth isotopes on a tantalum surface were investigated via observation of their surface ionization efficiencies. It was found that Lr would behave like low volatile rare earth elements such as Lu contrary to the semi-empirical expectation.

32 (Records 1-20 displayed on this page)