Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Consideration of concrete-type plug composition

Nakayama, Masashi; Niunoya, Sumio*; Miura, Norihiko*; Takeda, Nobufumi*

JAEA-Research 2017-016, 62 Pages, 2018/01

JAEA-Research-2017-016.pdf:19.99MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, Hokkaido. The URL Project consists of 2 major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies", and proceeds in 3 overlapping phases, over a period of around 20 years. Phase III (Investigations in the underground facilities) investigation was started in 2010 FY. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had started 2013 at GL-350 m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the EBS experiment is acquiring data concerned with THMC coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report shows consideration of concrete-type plug composition. The low alkaline cement developed by JAEA, called HFSC, was used for the plug. HFSC has used in construction test at the gallery as shotcrete in Horonobe URL.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Takeda, Nobufumi*; Miura, Norihiko*; Ishida, Tomoko*; Hata, Koji*; Uyama, Masao*; Sato, Shin*; Okuma, Fumiko*; Hayagane, Sayaka*; Matsui, Hiroya; et al.

JAEA-Technology 2016-035, 153 Pages, 2017/02

JAEA-Technology-2016-035.pdf:37.6MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project in FY2016, detailed investigations of the ( mechanical )behaviors of the plug and the rock mass around the reflood tunnel through ongoing reflood test were performed as part of (5) development of technologies for restoration and/or reduction of the excavation damage. As the result, particularly for the temperature change of the plug, its analytical results agree fairly well agree with the measurement ones. This means cracks induced by temperature stress can be prevented by the cooling countermeasure works reviewed in designing stage. In addition, for the behaviors of the plug and the bedrock boundary after reflooding the reflood tunnel, comparison between the results obtained by coupled hydro-mechanical analysis (stress-fluid coupled analysis ) with the ones by several measurements, concluded that the model established based on the analysis results is generally appropriated.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2014); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Hata, Koji*; Akiyoshi, Kenji*; Sato, Shin*; Takeda, Nobufumi*; Miura, Norihiko*; Uyama, Masao*; Kaneda, Tsutomu*; Ueda, Tadashi*; Hara, Akira*; et al.

JAEA-Technology 2016-002, 195 Pages, 2016/03

JAEA-Technology-2016-002.pdf:46.3MB
JAEA-Technology-2016-002-appendix(CD-ROM).zip:16.11MB

The researches on examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/on reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As the result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained.

Journal Articles

Design of plug installation at GL.-500m tunnel in Mizunami Underground Research Laboratory

Sato, Toshinori; Mikake, Shinichiro; Miura, Norihiko*; Ishida, Tomoko*

Tonneru To Chika, 46(12), p.901 - 911, 2015/12

The Japan Atomic Energy Agency conducts studies and research associated with the excavation of underground research facility at the Mizunami Underground Research Laboratory in Mizunami City, Gifu Prefecture. The research laboratory is an underground facility consisting of two shafts and some drifts and excavation has currently extended to a depth of 500 m. One of in-situ experiments, groundwater recovery experiment to understand groundwater pressure and geochemical properties change due to groundwater flooded has been performed in the GL.-500m drift. This report contains the results of design work of concrete plug for groundwater recovery experiment. Structural analysis and thermal stress analysis were performed to check resistant ability to over 5 MPa. Measurement plan was also discussed in this report.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2013); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Hata, Koji*; Akiyoshi, Kenji*; Sato, Shin*; Takeda, Yoshinori*; Miura, Norihiko*; Uyama, Masao*; Kaneda, Tsutomu*; Ueda, Tadashi*; Toda, Akiko*; et al.

JAEA-Technology 2014-040, 199 Pages, 2015/03

JAEA-Technology-2014-040.pdf:37.2MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies for restoration and/or reduction of the excavation damage. The researches on engineering technology such as verification of the initial design were being conducted by using data measured during construction as a part of the second phase of the MIU plan. Examination about the plug for reflood test in the GL-500m Access/Research Gallery-North as part of the development of technologies for restoration and/or reduction of excavation damage were carried out. Specifically, Literature survey was carried out about the plug, based on the result of literature survey, examination of the design condition, design of the plug and rock stability using numerical simulation, selection of materials for major parts, and grouting for water inflow from between rock and plug, were carried out in this study.

Journal Articles

The Project for grouting development for high level radioactive waste repository, 2; Relationship between basic properties and penetrability of low-alkaline cementitious grout material

Suzuki, Kenichiro*; Miura, Norihiko*; Iriya, Keishiro*; Noda, Masaru*; Kishi, Hirokazu

Doboku Gakkai Heisei-22-Nendo Zenkoku Taikai Dai-65-Kai Nenji Gakujutsu Koenkai Koen Gaiyoshu (DVD-ROM), p.85 - 86, 2010/09

no abstracts in English

JAEA Reports

Development of grout materials for a geological disposal system for high-level radioactive waste

Fukuoka, Naomi; Shinkai, Fumiaki; Miura, Norihiko*; Nobuto, Jun*; Yamada, Tsutomu*; Naito, Morimasa

JAEA-Data/Code 2010-005, 353 Pages, 2010/07

JAEA-Data-Code-2010-005-01.pdf:8.91MB
JAEA-Data-Code-2010-005-02.pdf:46.47MB

High-level radioactive waste management in Japan is based on the multi-barrier concept, composed of the engineered barrier system and the surrounding geological formations. Although cementitious materials are commonly used for rock support, lining, and grouting, their pH plume are considered to have an adverse effect on long-term safety of a geological disposal system. In addition, during the emplacement of waste package with buffer material, it is required to limit amount of groundwater inflow into a disposal pit or tunnel to a certain level by grouting because the bentonite clay buffer is easy to swell in time by contact with the groundwater. Therefore, it is necessary to develop new grout materials with penetrability for smaller fractures. This report shows the most appropriate composition of new grout materials to be suitable for the in-situ experiment based on the result of indoor test.

JAEA Reports

Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory Project, 3 (Contract research)

Nakayama, Masashi; Kobayashi, Yasushi; Noguchi, Akira; Miura, Norihiko*; Noda, Masaru*; Iriya, Keishiro*; Hitomi, Takashi*

JAEA-Research 2009-036, 49 Pages, 2009/11

JAEA-Research-2009-036.pdf:20.34MB

In Horonobe Underground Research Laboratory (Horonobe URL) Project, construction practicality test with HFSC (Highly Fly-ash contained Silica-fume Cement) is planned in a part of the gallery. It is necessary to validate that HFSC has performance under the actual construction, before HFSC is placed in the gallery. The main tasks in 2008 are follows; (1) suggestion of mix design for liner concrete of shaft in Horonobe URL, (2) investigation of long term pH changes in order to use for modeling, and (3) an experiment for interaction between HFSC and ground water around Horonobe URL. (1) 4 types of mix proportion are designed for ordinary concrete and high strength concrete which contains polypropylene fiber or not. As early age strength, 5N/mm$$^{2}$$ is required because of concrete formwork. HFSC424 with low water binder ratio can fulfill this requirement in combination with super plasticizer. (2) pH and components of solid and liquid phase which were made in 2003, and stored in water were analyzed. And cement paste of shotcrete which are made in 2006 were also analyzed. In this pH of shotcrete is lower than other in situ concrete since accelerating agent may act as decreasing factor of pH. (3) An experiment which investigates dissolution of HFSC cement hydrates to ground water around Horonobe URL. According to the experiment, dissolving depth of HFSC is 4 times small comparing to Ordinary Portland Cement hydrates after 30th water exchange.

Journal Articles

New type of shotcrete containing much pozzolanic additives

Miura, Norihiko*; Konishi, Kazuhiro*; Iriya, Keishiro*; Nakayama, Masashi; Matsui, Hiroya

Semento, Konkurito, (728), p.63 - 67, 2007/10

High level radioactive waste(HLW) repository is to be constructed at depth of over 300m below the surface. Shotcrete and lining will be used for safety under construction and operational period. Concrete is a kind of composite material which is constituted by aggregate, cement and additives. Low alkaline cement has been developed from the viewpoint of long term stability of the barrier systems which would be influenced by high alkaline arising from cement material. Japan Atomic Energy Agency(JAEA) has been developed HFSC(Highly Fly-ash contained Silica-fume Cement) which is one of a low alkaline cement contained silica-fume and fly-ash. JAEA is now implementing the construction of the underground research laboratory(URL) at Horonobe for the purpose of research in deep geological science and repository engineering technology. This report shows the properties of HFSC using as shotcrete.

Oral presentation

Study on fundamental properties of low alkaline cementitious grouting materials based on laboratory tests

Miura, Norihiko*; Noda, Masaru*; Kobayashi, Yasushi; Yamada, Tsutomu

no journal, , 

no abstracts in English

Oral presentation

A Study on material properties of cast-in-place concrete using low alkaline cement

Noguchi, Akira; Nakayama, Masashi; Kobayashi, Yasushi; Miura, Norihiko*; Noda, Masaru*; Iriya, Keishiro*

no journal, , 

no abstracts in English

Oral presentation

The Project for grouting technology development for the high level radioactive waste repository, 3; Selection of mix proportion on low-pH cementitious grout

Miura, Norihiko*; Namiki, Kazuto*; Kobayashi, Yasushi; Yamada, Tsutomu

no journal, , 

no abstracts in English

Oral presentation

Applicability study of dynamic grouting technology using low-pH cement

Noda, Masaru*; Suzuki, Kenichiro*; Iriya, Keishiro*; Miura, Norihiko*; Namiki, Kazuto*; Kobayashi, Yasushi

no journal, , 

no abstracts in English

Oral presentation

The In-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory, 9; Application of low alkaline cement for concrete plug

Nakayama, Masashi; Miura, Norihiko*; Ishida, Tomoko*; Takeda, Nobufumi*; Niunoya, Sumio*; Jo, Mayumi*

no journal, , 

no abstracts in English

Oral presentation

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Study on mix design of high-workable low-alkaline plug concrete and thermal stress analysis of plug concrete

Motoshima, Takayuki*; Usui, Tatsuya*; Sakamoto, Atsushi*; Niunoya, Sumio*; Ishida, Tomoko*; Miura, Norihiko*; Nakayama, Masashi; Ono, Hirokazu

no journal, , 

Japan Atomic Energy Agency is conducting the in-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory. The purpose of this paper is reporting the mix design of high-workable low-alkaline plug concrete. This paper also reports the thermal stress analysis of plug concrete and results of in-situ thermal measurements.

15 (Records 1-15 displayed on this page)
  • 1