検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Chemical-pressure-induced point defects enable low thermal conductivity for Mg$$_{2}$$Sn and Mg$$_{2}$$Si single crystals

齋藤 亘*; 林 慶*; Huang, Z.*; 杉本 和哉*; 大山 研司*; 八方 直久*; 原田 正英; 及川 健一; 稲村 泰弘; 林 好一*; et al.

ACS Applied Energy Materials (Internet), 4(5), p.5123 - 5131, 2021/05

 被引用回数:0 パーセンタイル:0(Chemistry, Physical)

The development of thermoelectric (TE) materials, which can directly convert waste heat into electricity, is vital to reduce the use of fossil fuels. Mg$$_{2}$$Sn and Mg$$_{2}$$Si are promising TE materials because of their superior TE performance. In this study, for future improvement of the TE performance, point defect engineering was applied to the Mg$$_{2}$$Sn and Mg$$_{2}$$Si single crystals (SCs) via boron (B) doping. Their crystal structures were analyzed via white neutron holography and SC X-ray diffraction. Moreover, nanostructures and TE properties of the B-doped Mg$$_{2}$$Sn and Mg$$_{2}$$Si SCs were investigated. The B-doping increased the chemical pressure on the Mg$$_{2}$$Sn and Mg$$_{2}$$Si SCs, leading to induce vacancy defects as a point defect. No apparent change was observed in electronic transport, but thermal transport was significantly prevented. This study demonstrates that the vacancy defects can be controlled by the chemical pressure, and can aid in achieving a high TE performance for the Mg$$_{2}$$Sn and Mg$$_{2}$$Si SCs.

1 件中 1件目~1件目を表示
  • 1