Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 211

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comparative methodology between actual RCCS and downscaled heat-removal test facility

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 133, p.830 - 836, 2019/11

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. Moreover, the authors started experiment research with using a scaled-down heat-removal test facility. Therefore, this study propose a comparative methodology between an actual RCCS and a scaled-down heat-removal test facility.

Journal Articles

Observation of the competing fission modes in $$^{178}$$Pt

Tsekhanovich, I.*; Andreyev, A.; Nishio, Katsuhisa; Denis-Petit, D.*; Hirose, Kentaro; Makii, Hiroyuki; Matheson, Z.*; Morimoto, Koji*; Morita, Kosuke*; Nazarewicz, W.*; et al.

Physics Letters B, 790, p.583 - 588, 2019/03

 Times Cited Count:2 Percentile:14.11(Astronomy & Astrophysics)

Journal Articles

Improvement of heat-removal capability using heat conduction on a novel reactor cavity cooling system (RCCS) design with passive safety features through radiation and natural convection

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 122, p.201 - 206, 2018/12

 Percentile:100(Nuclear Science & Technology)

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. This study addresses an improvement of heat-removal capability using heat conduction on the RCCS. As a result, a heat flux removed by the RCCS could be doubled; therefore, it is possible to halve the height of the RCCS or increase the thermal reactor power.

Journal Articles

Experimental study on heat removal performance of a new Reactor Cavity Cooling System (RCCS)

Hosomi, Seisuke*; Akashi, Tomoyasu*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Takamatsu, Kuniyoshi

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We started experiment research with using a scaled-down test section. Three experimental cases under different emissivity conditions were performed. We used Monte Carlo method to evaluate the contribution of radiation to the total heat released from the heater. As a result, after the heater wall was painted black, the contribution of radiation to the total heat could be increased to about 60%. A high emissivity of RPV surface is very effective to remove more heat from the reactor. A high emissivity of the cooling part wall is also effective because it not only increases the radiation emitted to the ambient air, but also may increase the temperature difference among the walls and enhance the convection heat transfer in the RCCS.

Journal Articles

Validation of three-dimensional finite-volume-particle method for simulation of liquid-liquid mixing flow behavior

Kato, Masatsugu*; Funakoshi, Kanji*; Liu, X.*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Kamiyama, Kenji

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

Journal Articles

Particle-based simulation of heat transfer behavior in EAGLE ID1 in-pile test

Morita, Koji*; Ogawa, Ryusei*; Tokioka, Hiromi*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 11 Pages, 2018/10

The EAGLE in-pile ID1 test has been performed by Japan Atomic Energy Agency to demonstrate early fuel discharge from a fuel subassembly with an inner duct structure, which is named FAIDUS. It was deduced that early duct wall failure observed in the test was initiated by high heat flux from the molten pool of fuel and steel mixture. The posttest analyses suggest that molten pool-to-duct wall heat transfer might be enhanced effectively by the molten steel with large thermal conductivity in the pool without the presence of fuel crust on the duct wall. In this study, mechanisms of heat transfer from the molten pool to the duct wall was analyzed using a fully Lagrangian approach based on the finite volume particle method for multi-component, multi-phase flows. A series of pin disruption, molten pool formation and duct wall failure behaviors was simulated to investigate mixing and separation behavior of molten steel and fuel in the pool, and their effect on molten pool-to-duct wall heat transfer. The present 2D particle-based simulations demonstrated that large thermal load beyond 10 MW/m$$^{2}$$ on the duct wall was caused by effective heat transfer due to direct contact of liquid fuel with nuclear heat to the duct wall.

Journal Articles

Numerical simulation on self-leveling behavior of mixed particle beds using multi-fluid model coupled with DEM

Phan, L. H. S.*; Ohara, Yohei*; Kawata, Ryo*; Liu, X.*; Liu, W.*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Tagami, Hirotaka

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 12 Pages, 2018/10

Self-leveling behavior of core fuel debris beds is one of the key phenomena for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). The SIMMER code has been developed for CDA analysis of SFRs, and the code has been successfully applied to numerical simulations for key thermal-hydraulic phenomena involved in CDAs as well as reactor safety assessment. However, in SIMMER's fluid-dynamics model, it is always difficult to represent the strong interactions between solid particles as well as the discrete particle characteristics. To solve this problem, a new method has been developed by combining the multi-fluid model of the SIMMER code with the discrete element method (DEM) for the solid phase to reasonably simulate the particle behaviors as well as the fluid-particle interactions in multi-phase flows. In this study, in order to validate the multi-fluid model of the SIMMER code coupled with DEM, numerical simulations were performed on a series of self-leveling experiments using a gas injection method in cylindrical particle beds. The effects of friction coefficient on the simulation results were investigated by sensitivity analysis. Though more extensive validations are needed, the reasonable agreement between simulation results and corresponding experimental data preliminarily demonstrates the potential ability of the present method in simulating the self-leveling behaviors of debris bed. It is expected that the SIMMER code coupled with DEM is a prospective computational tool for analysis of safety issues related to solid particle debris bed in SFRs.

Journal Articles

Modeling of eutectic reaction between molten stainless steel and B$$_{4}$$C for severe accident simulations

Liu, X.*; Morita, Koji*; Yamano, Hidemasa

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 12 Pages, 2018/10

On the basis of experimental results, growth of the eutectic material is modeled by the parabolic rate law. Heat and mass transfer processes are also modeled considering both the equilibrium and non-equilibrium phase changes of eutectic material. Thermophysical properties of eutectic material obtained from the experimental measurements are also included in the analytic thermophysical property model and analytic equation-of-state model.

Journal Articles

First direct mass measurements of nuclides around $$Z$$ = 100 with a multireflection time-of-flight mass spectrograph

Ito, Yuta*; Schury, P.*; Wada, Michiharu*; Arai, Fumiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Ishizawa, Satoshi*; Kaji, Daiya*; Kimura, Sota*; Koura, Hiroyuki; et al.

Physical Review Letters, 120(15), p.152501_1 - 152501_6, 2018/04

 Times Cited Count:11 Percentile:3.78(Physics, Multidisciplinary)

Masses of $$^{246}$$Es, $$^{251}$$Fm and the transfermium nuclei $$^{249-252}$$Md, and $$^{254}$$No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed $$N=152$$ neutron shell closure, have been directly measured using a multi-reflection time-of-flight mass spectrograph. The masses of $$^{246}$$Es and $$^{249,250,252}$$Md were measured for the first time. Using the masses of $$^{249,250}$$Md as anchor points for $$alpha$$ decay chains, the masses of heavier nuclei, up to $$^{261}$$Bh and $$^{266}$$Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter $$delta_{2n}$$ derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed $$N=152$$ neutron shell closure for Md and Lr.

Journal Articles

Model for particle behavior in debris bed

Tagami, Hirotaka; Cheng, S.*; Tobita, Yoshiharu; Morita, Koji*

Nuclear Engineering and Design, 328, p.95 - 106, 2018/03

 Times Cited Count:2 Percentile:16.17(Nuclear Science & Technology)

Journal Articles

Experimental study on debris bed characteristics for the sedimentation behavior of solid particles used as simulant debris

Shamsuzzaman, M.*; Horie, Tatsuro*; Fuke, Fusata*; Kamiyama, Motoki*; Morioka, Toru*; Matsumoto, Tatsuya*; Morita, Koji*; Tagami, Hirotaka; Suzuki, Toru*; Tobita, Yoshiharu

Annals of Nuclear Energy, 111, p.474 - 486, 2018/01

 Times Cited Count:2 Percentile:16.17(Nuclear Science & Technology)

Journal Articles

Sedimentation behavior of mixed solid particles

Sheikh, Md. A. R.*; Son, E.*; Kamiyama, Motoki*; Morioka, Toru*; Matsumoto, Tatsuya*; Morita, Koji*; Matsuba, Kenichi; Kamiyama, Kenji; Suzuki, Toru*

Journal of Nuclear Science and Technology, 55(6), p.623 - 633, 2018/01

 Percentile:100(Nuclear Science & Technology)

During core-disruptive accidents in sodium-cooled fast reactors, the sedimentation behavior of fragmented debris is crucial for in-vessel retention. The height of the beds formed may influence both the cooling of the bed and the neutronic characteristics. To develop an experimental database of bed formation behavior, a series of experiments using simulant materials, namely, Al$$_{2}$$O$$_{3}$$, ZrO$$_{2}$$, and stainless steel, were performed under gravity-driven discharge of solid particles from a nozzle into a quiescent cylindrical water pool. The bed height was measured for particles of different size, density, and sphericity, and an injection nozzle with varying diameter, injection velocity, and injection height. From these experiments, an empirical correlation was established to predict the bed height for both homogeneous and mixed particles for the different properties. This correlation reproduces reasonably well the experimental trend in bed height.

Journal Articles

Determination of fusion barrier distributions from quasielastic scattering cross sections towards superheavy nuclei synthesis

Tanaka, Taiki*; Narikiyo, Yoshihiro*; Morita, Kosuke*; Fujita, Kunihiro*; Kaji, Daiya*; Morimoto, Koji*; Yamaki, Sayaka*; Wakabayashi, Yasuo*; Tanaka, Kengo*; Takeyama, Mirei*; et al.

Journal of the Physical Society of Japan, 87(1), p.014201_1 - 014201_9, 2018/01

 Times Cited Count:3 Percentile:29.91(Physics, Multidisciplinary)

Excitation functions of quasielastic scattering cross sections for the $$^{48}$$Ca + $$^{208}$$Pb, $$^{50}$$Ti + $$^{208}$$Pb, and $$^{48}$$Ca + $$^{248}$$Cm reactions were successfully measured by using the gas-filled recoil-ion separator GARIS. Fusion barrier distributions were extracted from these data, and compared with the coupled-channels calculations. It was found that the peak energies of the barrier distributions for the $$^{48}$$Ca + $$^{208}$$Pb and $$^{50}$$Ti + $$^{208}$$Pb systems coincide with those of the 2n evaporation channel cross sections for the systems, while that of the $$^{48}$$Ca + $$^{248}$$Cm is located slightly below the 4n evaporation ones. This results provide us helpful information to predict the optimum beam energy to synthesize superheavy nuclei.

Journal Articles

$$beta$$-delayed fission of $$^{230}$$Am

Wilson, G. L.*; Takeyama, Mirei*; Andreyev, A.; Andel, B.*; Antalic, S.*; Catford, W. N.*; Ghys, L.*; Haba, Hiromitsu*; He${ss}$berger, F. P.*; Huang, M.*; et al.

Physical Review C, 96(4), p.044315_1 - 044315_7, 2017/10

 Times Cited Count:1 Percentile:72.32(Physics, Nuclear)

Journal Articles

Numerical simulation of solid-particle sedimentation behavior using a multi-fluid model coupled with DEM

Kawata, Ryo*; Ohara, Yohei*; Sheikh, Md. A. R.*; Liu, X.*; Matsumoto, Tatsuya*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Suzuki, Toru

Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 14 Pages, 2017/09

Journal Articles

Observation of doubly-charged ions of francium isotopes extracted from a gas cell

Schury, P.*; Wada, Michiharu*; Ito, Yuta*; Kaji, Daiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Kimura, Sota*; Koura, Hiroyuki; MacCormick, M.*; Miyatake, Hiroari*; et al.

Nuclear Instruments and Methods in Physics Research B, 407, p.160 - 165, 2017/06

 Times Cited Count:3 Percentile:27.27(Instruments & Instrumentation)

Various isotopes of Ac, Ra, Fr, and Rn were produced by fusion-evaporation reactions using a $$^{48}$$Ca beam. The energetic ions were stopped in and extracted from a helium gas cell. The extracted ions were identified using a multi-reflection time-of-fight mass spectrograph. In all cases, it was observed that the predominant charge state for the extracted ions, including the alkali Fr, was 2+.

Journal Articles

Study of the reaction $$^{48}$$Ca + $$^{248}$$Cm $$rightarrow$$ $$^{296}$$Lv$$^{ast}$$ at RIKEN-GARIS

Kaji, Daiya*; Morita, Kosuke*; Morimoto, Koji*; Haba, Hiromitsu*; Asai, Masato; Fujita, Kunihiro*; Gan, Z.*; Geissel, H.*; Hasebe, Hiroo*; Hofmann, S.*; et al.

Journal of the Physical Society of Japan, 86(3), p.034201_1 - 034201_7, 2017/03

 Times Cited Count:10 Percentile:12.59(Physics, Multidisciplinary)

The fusion reaction of $$^{48}$$Ca + $$^{248}$$Cm $$rightarrow$$ $$^{296}$$Lv$$^{ast}$$ was studied using the gas-filled recoil-ion separator GARIS at RIKEN. A total of seven $$alpha$$ and spontaneous-fission decay chains were observed, which would originate from the reaction products of the element 116, $$^{292}$$Lv and $$^{293}$$Lv. Decay properties observed in the chains are in good agreement with the previously published ones. However, one of the chains showed a discrepancy, indicating the new spontaneous-fission branch in $$^{285}$$Cn or the production of the new isotope $$^{294}$$Lv.

Journal Articles

First online multireflection time-of-flight mass measurements of isobar chains produced by fusion-evaporation reactions; Toward identification of superheavy elements via mass spectroscopy

Schury, P.*; Wada, Michiharu*; Ito, Yuta*; Kaji, Daiya*; Arai, Fumiya*; MacCormick, M.*; Murray, I.*; Haba, Hiromitsu*; Jeong, S.*; Kimura, Sota*; et al.

Physical Review C, 95(1), p.011305_1 - 011305_6, 2017/01

AA2016-0638.pdf:0.71MB

 Times Cited Count:10 Percentile:8.11(Physics, Nuclear)

Using a multireflection time-of-flight mass spectrograph located after a gas cell coupled with the gas-filled recoil ion separator GARIS-II, the masses of several $$alpha$$-decaying heavy nuclei were directly and precisely measured. The nuclei were produced via fusion-evaporation reactions and separated from projectilelike and targetlike particles using GARIS-II before being stopped in a helium-filled gas cell. Time-of-flight spectra for three isobar chains, $$^{204}$$Fr-$$^{204}$$Rn-$$^{204}$$At-$$^{204}$$Po, $$^{205}$$Fr- $$^{205}$$Rn-$$^{205}$$At-$$^{205}$$Po-$$^{205}$$Bi, and $$^{206}$$Fr-$$^{206}$$Rn-$$^{206}$$At, were observed. Precision atomic mass values were determined for $$^{204-206}$$Fr, $$^{204,205}$$Rn, and $$^{204,205}$$At. Identifications of $$^{205}$$Bi, $$^{204,205}$$Po, $$^{206}$$Rn, and $$^{206}$$At were made with N$$leq$$10 detected ions, representing the next step toward use of mass spectrometry to identify exceedingly low-yield species such as superheavy element ions.

Journal Articles

Complex chemistry with complex compounds

Eichler, R.*; Asai, Masato; Brand, H.*; Chiera, N. M.*; Di Nitto, A.*; Dressler, R.*; D$"u$llmann, Ch. E.*; Even, J.*; Fangli, F.*; Goetz, M.*; et al.

EPJ Web of Conferences (Internet), 131, p.07005_1 - 07005_7, 2016/12

 Percentile:100

In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the productions and investigations of fragile single molecular species of superheavy elements. The latest highlight is the formation of very volatile hexacarbonyl compound of element 106, Sg(CO)$$_{6}$$. Following this success, second-generation experiments were performed to measure the first bond dissociation energy between the central metal atom and the surrounding ligand. The method using a tubular decomposition reactor was developed and successfully applied to short-lived Mo(CO)$$_{6}$$, W(CO)$$_{6}$$, and Sg(CO)$$_{6}$$.

Journal Articles

Experimental database for bed formation behaviors of solid particles

Sheikh, M. A. R.*; Son, E.*; Kamiyama, Motoki*; Morioka, Toru*; Matsumoto, Tatsuya*; Morita, Koji*; Matsuba, Kenichi; Kamiyama, Kenji; Suzuki, Toru

Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 10 Pages, 2016/11

During the material relocation phase of core disruptive accidents in sodium-cooled fast reactors, the sedimentation behavior of fragmented debris leading to the formation of debris beds is crucial for in-vessel retention by debris bed cooling. In this study, a series of experiments using simulant materials was performed to develop an experimental database of bed formation behavior by gravity driven discharge of solid particles from a nozzle into a quiescent cylindrical water pool. The bed height as well as the bed shape was measured. Three types of spherical and non-spherical particles, namely Al$$_{2}$$O$$_{3}$$, ZrO$$_{2}$$ and stainless steel with different size were employed to study the effect of key experimental parameter on debris bed mound shape. Based on the experimental results, an empirical correlation as experimental database was proposed to predict the particle bed height. The proposed correlation reasonably reproduces the experimental trend of the bed height variation on the crucial factors. This result demonstrates a wide applicability of the proposed empirical model to predict the bed height in terms of all crucial factors with reasonable accuracy.

211 (Records 1-20 displayed on this page)