検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 159 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Multi-scale synchrotron X-ray scattering studies on thermo-induced changes in structural and mechanical properties of CSH/PCE composites

Im, S.*; Jee, H.*; 兼松 学*; 諸岡 聡; Choe, H.*; 西尾 悠平*; 町田 晃彦*; 冨永 亜希; Jeon, B. H.*; Bae, S.*

Construction and Building Materials, 459, p.139742_1 - 139742_17, 2025/01

 被引用回数:0 パーセンタイル:0.00(Construction & Building Technology)

The influence of thermal deformation in lattice structure and inter-atomic distance on the residual mechanical properties of calcium silicate hydrate (CSH)/polycarboxylate superplasticizer (PCE) composites at varying Ca/Si ratios remains ambiguous. Here, correlations between the multiscale structural transformation and mechanical properties of CSH/PCE composites with Ca/Si ratios ranging of 0.6 to 1.0 are investigated using ex situ small-angle X-ray scattering (Q = 0.005 - 2.7 $AA$^{-}$$) and in situ loading wide-angle X-ray scattering (Q = 1 - 18.5 $AA$^{-}$$).

論文

Role of retained austenite and deformation-induced martensite in 0.15C-5Mn steel monitored by ${it in situ}$ neutron diffraction measurement during tensile deformation

山下 享介*; 諸岡 聡; Gong, W.; 川崎 卓郎; Harjo, S.; 北條 智彦*; 興津 貴隆*; 藤井 英俊*

ISIJ International, 64(14), p.2051 - 2060, 2024/12

An Fe-0.15C-5Mn-0.5Si-0.05Nb steel annealed at 660$$^{circ}$$C and 685$$^{circ}$$C showed L$"u$ders deformation followed by high work hardening, with variations in L$"u$ders strain and hardening behavior. ${it In situ}$ neutron diffraction during tensile tests analyzed phase stresses, strength contributions, and austenite orientation. Deformation-induced martensite contributed $$sim$$1000 MPa to strength near tensile failure, while austenite mainly enhanced ductility via transformation-induced plasticity. Austenite transformed to martensite during L$"u$ders deformation regardless of orientation, though 311-oriented grains tended to remain along the tensile direction.

論文

Pearlite growth kinetics in Fe-C-Mn eutectoid steels; Quantitative evaluation of energy dissipation at pearlite growth front via experimental approaches

Zhang, Y.-J.*; 梅田 岳昌*; 諸岡 聡; Harjo, S.; 宮本 吾郎*; 古原 忠*

Metallurgical and Materials Transactions A, 55(10), p.3921 - 3936, 2024/10

 被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)

In this study, a series of eutectoid steels with Mn addition up to 2 mass% were isothermally transformed at various temperatures from 873 K to 973 K to clarify the pearlite growth kinetics and the underlying thermodynamics at its growth front. The microscopic observation indicates the acceleration in pearlite growth rate and refinement in lamellar spacing by decreasing the transformation temperature or the amount of Mn addition. After analyzing the solute distribution at pearlite growth front via three-dimensional atom probe, no macroscopic Mn partitioning across pearlite/austenite interface is detected, whereas Mn segregation is only observed at ferrite/austenite interface. Furthermore, in-situ neutron diffraction measurements performed at elevated temperatures reveals that the magnitude of elastic strain generated during pearlite transformation is very small.

論文

Influence of interstitial carbon on bulk texture evolution of carbide-free high-entropy alloys during cold rolling using neutron diffraction

Fang, W.*; Liu, C.*; Zhang, J.*; 徐 平光; Peng, T.*; Liu, B.*; 諸岡 聡; Yin, F.*

Scripta Materialia, 249, p.116046_1 - 116046_6, 2024/08

 被引用回数:2 パーセンタイル:73.35(Nanoscience & Nanotechnology)

The influence of interstitial carbon on the texture evolution of high-entropy alloys during cold rolling was investigated. To prevent carbide formation, elements with weak carbon affinity were carefully selected in the (FeMnCoNi)$$_{96.5}$$C$$_{3.5}$$ alloy. Neutron diffraction, electron channeling contrast imaging, and electron backscatter diffraction were used to analyze the texture and microstructure evolution in alloys with and without carbon addition. Though their texture components are similar at the early stage of deformation, the Brass and Goss textures in the carbon-containing alloy at 50% cold rolling reduction are obviously higher than those in the carbon-free alloy, while Copper and S textures are lower. A large number of deformation twins induced in the carbon containing alloy is attributed as the significant reason for the texture differences. This work helps to understand the impact of interstitial carbon on the texture evolution of high-entropy alloys, providing valuable insights for microstructure and performance optimization.

論文

Thermal stability of retained austenite with heterogeneous composition and size in austempered Fe-2Mn-1.5Si-0.4C alloy

渡邊 未来*; 宮本 吾郎*; Zhang, Y.*; 諸岡 聡; Harjo, S.; 小林 康浩*; 古原 忠*

ISIJ International, 64(9), p.1464 - 1476, 2024/07

 被引用回数:2 パーセンタイル:54.79(Metallurgy & Metallurgical Engineering)

The mechanical properties of TRIP steels depend on heterogeneities of chemical composition and grain size in the retained $$gamma$$ structure, although these heterogeneities have not been characterized in detail. Therefore, in this study, we quantitatively investigate the inhomogeneous carbon concentration and grain size distribution, and its effects on the thermal stability of the retained $$gamma$$ in Fe-2Mn-1.5Si-0.4C (mass%) TRIP steel using FE-EPMA, EBSD, M$"o$ssbauer spectroscopy, and in-situ neutron diffraction during bainitic transformation at 673 K. In-situ neutron diffraction experiments detects high-carbon $$gamma$$ evolving during bainite transformation, in addition to the original $$gamma$$, and the time variation of the volume fraction of highcarbon $$gamma$$ agrees well with the fraction of $$gamma$$ retained at room temperature. Williamson-Hall analysis based on peak width suggests that heterogeneity of carbon content exists even within the high-carbon $$gamma$$. Compositional analysis using FE-EPMA and three-dimensional atom probe directly revealed that fine filmy $$gamma$$ was highly enriched with carbon compared to larger blocky $$gamma$$, and the carbon content in blocky $$gamma$$ decreases with increasing blocky $$gamma$$ size. DICTRA simulation qualitatively reproduces the size dependency of carbon enrichment into $$gamma$$. It was also found that $$gamma$$ tends to be retained at higher carbon content and smaller $$gamma$$ grain size since the smaller grain size directly improves thermal stability and the smaller $$gamma$$ size further contributes to the thermal stability via enhanced carbon enrichment.

論文

Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy

Li, L.*; 宮本 吾郎*; Zhang, Y.*; Li, M.*; 諸岡 聡; 及川 勝成*; 友田 陽*; 古原 忠*

Journal of Materials Science & Technology, 184, p.221 - 234, 2024/06

 被引用回数:3 パーセンタイル:41.38(Materials Science, Multidisciplinary)

Dynamic transformation (DT) of austenite ($$gamma$$) to ferrite ($$alpha$$) in the hot deformation of various carbon steels was widely investigated. However, the nature of DT remains unclear due to the lack of quantitative analysis of stress partitioning between two phases and the uncertainty of local distribution of substitutional elements at the interface in multi-component carbon steels used in the previous studies. Therefore, in the present study, a binary Fe-Ni alloy with $$alpha$$+$$gamma$$ duplex microstructure in equilibrium was prepared and isothermally compressed in $$alpha$$+$$gamma$$ two-phase region to achieve quantitative analysis of microstructure evolution, stress partitioning and thermodynamics during DT. $$gamma$$ to $$alpha$$ DT during isothermal compression and $$alpha$$ to $$gamma$$ reverse transformation on isothermal annealing under unloaded condition after deformation were accompanied by Ni partitioning. The lattice strains during thermomechanical processing were obtained via in-situ neutron diffraction measurement, based on which the stress partitioning behavior between $$gamma$$ and $$alpha$$ was discussed by using the generalized Hooke's law. A thermodynamic framework for the isothermal deformation in solids was established based on the basic laws of thermodynamics, and it was shown that the total Helmholtz free energy change in the deformable material during the isothermal process should be smaller than the work done to the deformable material. Under the present thermodynamic framework, the microstructure evolution in the isothermal compression of Fe-14Ni alloy was well explained by considering the changes in chemical free energy, plastic and elastic energies and the work done to the material. In addition, the stabilization of the soft $$alpha$$ phase in Fe-14Ni alloy by deformation was rationalized since the $$gamma$$ to $$alpha$$ transformation decreased the total Helmholtz free energy by decreasing the elastic and dislocation energies.

論文

${it In situ}$ neutron diffraction revealing the achievement of excellent combination of strength and ductility in metastable austenitic steel by grain refinement

Mao, W.; Gong, W.; Harjo, S.; 諸岡 聡; Gao, S.*; 川崎 卓郎; 辻 伸泰*

Journal of Materials Science & Technology, 176, p.69 - 82, 2024/03

 被引用回数:5 パーセンタイル:59.93(Materials Science, Multidisciplinary)

Fe-24Ni-0.3C(wt.%)準安定オーステナイト鋼の降伏応力は、平均結晶粒径が35$$mu$$m(粗粒[CG])から0.5$$mu$$m(超微細粒[UFG])に減少すると3.5倍(158$$rightarrow$$551MPa)に増加したが、引張伸びは大きく維持された(0.87$$rightarrow$$0.82)。結晶粒径が力学特性と変形機構に及ぼす影響を定量的に明らかにするため、室温での引張変形中にCGとUFG Fe-24Ni-0.3C鋼のその場中性子回折測定を行った。CGとUFG試料における塑性変形の初期段階は転位すべりによって支配され、変形後期には変形誘起マルテンサイト変態(DIMT)も生じた。結晶粒の微細化により、DIMTの開始応力が大きく増加し、ひずみに関するDIMTの速度が抑制されることがわかった。結果として、(i)結晶粒微細化によりオー ステナイトが安定化し、DIMTに対して最も安定な結晶粒である$$<$$111$$>$$//LD(LD:負荷方向)オーステナイト粒でのDIMTの開始が大幅に遅れた。その結果、UFG試験片の$$<$$111$$>$$//LDオーステナイト粒のほとんどはマルテンサイトに変態しなかった。(ii)結晶粒の微細化は、マルテンサイト変態の自己促進効果も抑制した。それにもかかわらず、UFG試験片の変態速度が低いDIMTは、CG試験片のより応力を増加させるのに効率がよく、変形中に均一な変形を維持するのに適していた。以上の現象は、UFG準安定オーステナイト鋼の優れた強度と延性の両立に相互に寄与している。

論文

Stress measurement of stainless steel piping welds by complementary use of high-energy synchrotron X-rays and neutrons

三浦 靖史*; 鈴木 賢治*; 諸岡 聡; 菖蒲 敬久

Quantum Beam Science (Internet), 8(1), p.1_1 - 1_14, 2024/03

Probabilistic fracture mechanics (PFM) is expected as a reasonable structural integrity assessment method for nuclear components such as piping, whose main degradation phenomenon is stress corrosion cracking (SCC). Some input parameters are necessary for PFM analysis, and welding residual stress is one of the most important parameters because welding residual stress affects SCC initiation and propagation. Recently, a double exposure method (DEM) with synchrotron X-ray has been proposed, and the method is an expected candidate for the measurement of welding residual stress with a high spatial resolution. In this paper, the DEM was applied to measure the residual stress of the plate specimen, which was cut from the welded pipe using electrical discharge machining, and detailed stress maps under a plane stress state were obtained. Furthermore, the residual stress distributions of the welded pipe under a triaxial stress state were also evaluated using neutron diffraction. From these results, the method for obtaining a detailed stress map of the welded pipe by the complementary use of high-energy synchrotron radiation X-rays and neutrons was proposed.

論文

残留オーステナイトを含有する中Mn複合組織鋼の高速変形特性

興津 貴隆*; 北條 智彦*; 諸岡 聡; 宮本 吾郎*

鉄と鋼, 110(3), p.260 - 267, 2024/02

 被引用回数:0 パーセンタイル:0.00(Metallurgy & Metallurgical Engineering)

We have investigated the dynamic tensile properties of 4, 5, 6-mass%-Mn-containing low carbon steels with multi-phase microstructures containing retained austenite. The five materials used were classified into two groups. The first group of materials, with around 10% of retained austenite, showed normal strain rete dependence of yield strength (YS) and tensile strength (TS) as in conventional high strength steels. The second group of materials, containing 25-36% of retained austenite, exhibited L$"u$ders elongation showed also normal strain rate dependence in YS and flow stress at L$"u$ders deformation, but TS varied in a complex manner. Among the second group, in the 4 Mn steel, TS was nearly constant at strain rates below 1 s$$^{-1}$$ but increased slightly at higher strain rates. In the 5 and 6 Mn steels, TS once decreased up to the strain rate of 1 or 10 s$$^{-1}$$, and then began to increase at higher strain rates. These behaviors were discussed in terms of temperature rise during plastic deformation causing suppression of martensitic transformation, and thermal stability of retained austenite. In the 4 Mn steel with relatively unstable retained austenite, almost all the austenite transforms regardless of strain rate. In the 5 and 6 Mn steels, where the retained austenite is moderately stable, strain induced transformation of austenite continues up to high plastic strain, providing a good balance of strength and ductility. At high strain rate, TS decreases slightly due to temperature rise, but at higher strain rates than 1 s$$^{-1}$$, the strain rate sensitivity of flow stress in ferrite become prominent and the flow stress increases.

論文

Role of retained austenite and deformation induced martensite in 0.15C-5Mn steel monitored by ${it in-situ}$ neutron diffraction measurement during tensile deformation

山下 享介*; 諸岡 聡; Gong, W.; 川崎 卓郎; Harjo, S.; 北條 智彦*; 興津 貴隆*; 藤井 英俊*

鉄と鋼, 110(3), p.241 - 251, 2024/02

 被引用回数:0 パーセンタイル:0.00(Metallurgy & Metallurgical Engineering)

A Fe-0.15C-5Mn-0.5Si-0.05Nb medium Mn steel annealed at 660$$^{circ}$$C and 685$$^{circ}$$C both exhibited inhomogeneous deformation with Luders deformation and extremely high work hardening rates, but with different Luders strain and work hardening behavior. ${it In-situ}$ neutron diffraction measurements during tensile test were performed to investigate changes in the phase stresses and in the contributed stresses to the strength of the constituent phases, and crystal orientation of austenite. The role of each constituent phase in the deformation and the effect of crystallographic orientation on austenite stability were discussed. Deformation induced martensite showed excellent phase stress and contributed to the strength approximately 1000 MPa, which is close to macroscopic tensile strength.

論文

Fe-5Mn-0.1C中Mn鋼におけるリューダース変形中の微視組織および塑性の発達

小山 元道*; 山下 享介*; 諸岡 聡; 澤口 孝宏*; Yang, Z.*; 北條 智彦*; 川崎 卓郎; Harjo, S.

鉄と鋼, 110(3), p.197 - 204, 2024/02

 被引用回数:1 パーセンタイル:54.79(Metallurgy & Metallurgical Engineering)

The local plasticity and associated microstructure evolution in Fe-5Mn-0.1C medium-Mn steel (wt.%) were investigated in this study. Specifically, the micro-deformation mechanism during L$"u$ders banding was characterized based on multi-scale electron backscatter diffraction measurements and electron channeling contrast imaging. Similar to other medium-Mn steels, the Fe-5Mn-0.1C steel showed discontinuous macroscopic deformation, preferential plastic deformation in austenite, and deformation-induced martensitic transformation during L$"u$ders deformation. Hexagonal close-packed martensite was also observed as an intermediate phase. Furthermore, an in-situ neutron diffraction experiment revealed that the pre-existing body- centered cubic phase, which was mainly ferrite, was a minor deformation path, although ferrite was the major constituent phase.

論文

Fe-5Mn-0.1C中Mn鋼におけるリューダース帯伝播中の階層的不均一変形; その場走査型電子顕微鏡観察

小山 元道*; 山下 享介*; 諸岡 聡; Yang, Z.*; Varanasi, R. S.*; 北條 智彦*; 川崎 卓郎; Harjo, S.

鉄と鋼, 110(3), p.205 - 216, 2024/02

 被引用回数:0 パーセンタイル:0.00(Metallurgy & Metallurgical Engineering)

${it In situ}$ deformation experiments with cold-rolled and intercritically annealed Fe-5Mn-0.1C steel were carried out at ambient temperature to characterize the deformation heterogeneity during L$"u$ders band propagation. Deformation band formation, which is a precursor phenomenon of L$"u$ders band propagation, occurred even in the macroscopically elastic deformation stage. The deformation bands in the L$"u$ders front grew from both the side edges to the center of the specimen. After macroscopic yielding, the thin deformation bands grew via band branching, thickening, multiple band initiation, and their coalescence, the behavior of which was heterogeneous. Thick deformation bands formed irregularly in front of the region where the thin deformation bands were densified. The thin deformation bands were not further densified when the spacing of the bands was below $$sim$$ 10 $$mu$$m. Instead, the regions between the deformation bands showed a homogeneous plasticity evolution. The growth of the thin deformation bands was discontinuous, which may be due to the presence of ferrite groups in the propagation path of the deformation bands. Based on these observations, a model for discontinuous L$"u$ders band propagation has been proposed.

論文

Impact of interatomic structural characteristics of aluminosilicate hydrate on the mechanical properties of metakaolin-based geopolymer

Kim, G.*; Cho, S.-M.*; Im, S.*; Suh, H.*; 諸岡 聡; 菖蒲 敬久; 兼松 学*; 町田 晃彦*; Bae, S.*

Construction and Building Materials, 411, p.134529_1 - 134529_18, 2024/01

 被引用回数:7 パーセンタイル:70.27(Construction & Building Technology)

This study explores the influence of the interatomic structure of sodium aluminosilicate hydrate (N-A-S-H) with varying silica contents on the mechanical properties of metakaolin-based geopolymer. Geopolymer pastes comprising Si/Al ratios between 2.0 and 3.0 were synthesized. A larger number of Si-O-Si linkages compared to Si-O-Al linkages and a higher atomic number density were found in the geopolymers with higher silica contents, which enhanced the compressive strength of the geopolymer pastes up to the optimal Si/Al ratio of 2.5. The paste with a Si/Al = 2.5 exhibited a greater portion of Q$$^{4}$$(1Al and 2Al) and denser morphology compared to the other geopolymer pastes. Furthermore, in-situ high-energy synchrotron X-ray scattering experiments were conducted to assess the elastic modulus of the aluminosilicate structure at a local atomic scale. The modulus value in real space decreases with increasing silica contents up to Si/Al = 2.5 and increases with the presence of excessive unreacted silica fume. The modulus value in reciprocal space for the axial and lateral directions both presented a positive value at the geopolymer comprising a Si/Al ratio higher than 2.5, indicating that the load-bearing property of N-A-S-H changed at higher Si/Al ratios. Moreover, the smallest difference between the strains along the axial and lateral directions was detected for the geopolymer with Si/Al = 2.5 in both the real and reciprocal space, owing to the most interconnected and flexible nanostructure, which led to the highest mechanical strength.

論文

Martensitic transformation behavior of Fe-Ni-C alloys monitored by ${it in-situ}$ neutron diffraction during cryogenic cooling

山下 享介*; Harjo, S.; 川崎 卓郎; 諸岡 聡; Gong, W.; 藤井 英俊*; 友田 陽*

ISIJ International, 64(2), p.192 - 201, 2024/01

 被引用回数:0 パーセンタイル:0.00(Metallurgy & Metallurgical Engineering)

${it In situ}$ neutron diffraction measurements were performed on Fe-33Ni-0.004C alloy (33Ni alloy) and Fe-27Ni-0.5C alloy (27Ni-0.5C alloy) during cooling from room temperature to the cryogenic temperature (4 K) to evaluate changes in the lattice constants of austenite and martensite, and changes in the tetragonality of martensite due to thermally induced martensitic transformation. As the martensitic transformation progressed, the lattice constants of austenite in both alloys deviated to smaller values than those predicted considering the thermal shrinkage, accompanied by an increase in the full width at half maximum of austenite. The fresh martensite formed in both alloys had a body-centered tetragonal (BCT) structure, regardless of the carbon content. The tetragonality of martensite decreased with progressive martensitic transformation during cooling in the 33Ni alloy, but was almost constant in the 27Ni-0.5C alloy. This suggests that carbon is necessary to maintain the tetragonality of martensite during cooling. The tetragonality of martensite in the 27Ni-0.5C alloy decreased during room temperature aging because of carbon mobility.

論文

Multi-aspect characterization of low-temperature tempering behaviors in high-carbon martensite

Zhang, Y.*; 丸澤 賢人*; 工藤 航平*; 諸岡 聡; Harjo, S.; 宮本 吾郎*; 古原 忠*

ISIJ International, 64(2), p.245 - 256, 2024/01

 被引用回数:2 パーセンタイル:73.35(Metallurgy & Metallurgical Engineering)

As-quenched martensite in carbon steels needs to be tempered to restore its ductility and toughness for practical applications. During tempering of martensite, microstructural evolutions induced by a series of reactions relevant to carbon diffusion is known to occur. In this study, multi-aspect characterization using advanced techniques such as in-situ neutron diffraction, transmission electron microscopy and three-dimensional atom probe tomography, was performed to investigate the changes in tetragonality, physical properties, microstructure and solute carbon content in high-carbon martensite, with an aim to clarify its low-temperature tempering behaviors. A binary alloy with a chemical composition of Fe-0.78 mass%C was austenitized and quenched to prepare the as-quenched martensite, followed by tempering in continuous heating at different heating rates. It was found that various reactions occurred sequentially during tempering, starting from the structure modulation generated by carbon clustering in the 0th stage, then followed by the precipitation of metastable $$eta$$-carbide particles on linear features in the 1st stage, towards the later decomposition of retained austenite and precipitation of cementite in the 2nd and 3rd stages, respectively. After analyzing the experimental results, the solute carbon content in martensite tempered under various conditions was found to be in good agreement with that estimated from the lattice volume expansion, whereas the evaluation based on the tetragonality might lead to some underestimation of the solute carbon content in martensite tempered at high temperatures.

論文

Characteristic microstructural phase evolution and the compressive strength development mechanisms of tricalcium silicate pastes under various initial carbonation curing environments

Cho, S.*; Suh, H.*; Im, S.*; Kim, G.*; 兼松 学*; 諸岡 聡; 町田 晃彦*; 菖蒲 敬久; Bae, S.*

Construction and Building Materials, 409, p.133866_1 - 133866_20, 2023/12

 被引用回数:12 パーセンタイル:78.84(Construction & Building Technology)

The effects of various initial carbonation curing environments on the phase evolution and resulting mechanical characteristics of tricalcium silicate paste were studied. For the analyses of the reaction products and microstructure, synchrotron X-ray diffraction, thermogravimetry, Fourier transform-infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and high-resolution X-ray computed tomography were utilized. C$$_{3}$$S cured under carbonation environment pressurized by 0.1 MPa showed excellent mechanical properties owing to the highest degree of reaction and homogeneous generation of CaCO$$_{3}$$ with low-Ca/Si calcium silicate hydrates, resulting in a dense matrix with refined pore structure. C$$_{3}$$S paste treated under other carbonation conditions underwent deteriorative microstructural phase transitions, including void evolution by decalcification of C-S-H and an inhomogeneous composition of crystalline phases, resulting in inferior properties.

論文

Key role of temperature on delamination in solid-state additive manufacturing via supersonic impact

Wang, Q.*; Ma, N.*; Huang, W.*; Shi, J.*; Luo, X.-T.*; 冨高 宙*; 諸岡 聡; 渡邊 誠*

Materials Research Letters (Internet), 11(9), p.742 - 748, 2023/09

 被引用回数:2 パーセンタイル:28.81(Materials Science, Multidisciplinary)

Cold spray (CS) has emerged as a representative of solid-state additive manufacturing (AM) via supersonic impact. It enables a high deposition rate of solid-state microparticles. Delamination, however, tends to occur when depositing too thick; this remains to be conquered. Here, a CS-like process, warm spray (WS), was presented. Interestingly, it was found that the appropriate increase in particle temperature can effectively reduce the residual stress amplitude, relieving the concentrated tensile stress and safeguarding the additively manufactured components from interfacial delamination even when depositing too thick. The key role of temperature on delamination was identified in solid-state AM via supersonic impact.

論文

Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through ${it in situ}$ neutron diffraction

Gong, W.; Harjo, S.; 友田 陽*; 諸岡 聡; 川崎 卓郎; 柴田 曉伸*; 辻 伸泰*

Acta Materialia, 250, p.118860_1 - 118860_16, 2023/05

 被引用回数:16 パーセンタイル:93.08(Materials Science, Multidisciplinary)

Martensitic transformation is accompanied by the generation of microscale and macroscale internal stresses during cooling below the martensitic transformation start temperature. These internal stresses have been determined through X-ray or neutron diffraction, but the reported results are not consistent, probably because the measured lattice parameter is influenced not only by the internal stress but also by several factors, including solute elements and crystal defects. Therefore, ${it in situ}$ neutron diffraction combined with dilatometry measurements during martensitic transformation and subsequent cyclic tempering were performed for an Fe-18Ni alloy. The phase strains calculated by lattice parameter variations show that a hydrostatic compressive strain in austenite and a tensile strain in martensite arose as the martensitic transformation progressed during continuous cooling or isothermal holding. However, the phase stresses of austenite and martensite estimated from these strains failed to hold stress balance law when dense crystal defects involved in the processes. After these crystal defects were removed by appropriate tempering, the stress balance law held well. Meanwhile, the phase stresses of austenite and martensite were changed to opposite, revealing their true identity. Various crystal defects in austenite and martensite, introduced by plastic accommodation, were suggested to affect their lattice parameters and then their phase stresses.

論文

Accuracy of measuring rebar strain in concrete using a diffractometer for residual stress analysis

安江 歩夢*; 川上 真由*; 小林 謙祐*; Kim, J.*; 宮津 裕次*; 西尾 悠平*; 向井 智久*; 諸岡 聡; 兼松 学*

Quantum Beam Science (Internet), 7(2), p.15_1 - 15_14, 2023/05

Neutron diffraction is a noncontact method that can measure the rebar strain inside concrete. In this method, rebar strain and stress are calculated using the diffraction profile of neutrons irradiated during a specific time period. In general, measurement accuracy improves with the length of the measurement time. However, in previous studies, the measurement time was determined empirically, which makes the accuracy and reliability of the measurement results unclear. In this study, the relationship between the measurement time and the measurement standard deviation was examined for reinforced concrete specimens under different conditions. The aim was to clarify the accuracy of the measurement of rebar stress using the neutron diffraction method. It was found that if the optical setup of the neutron diffractometer and the conditions of the specimen are the same, there is a unique relationship between the diffraction intensity and the rebar stress standard deviation. Furthermore, using this unique relationship, this paper proposes a method for determining the measurement time from the allowable accuracy of the rebar stress, which ensures the accuracy of the neutron diffraction method.

論文

放射光X線と中性子を相補的に用いた小口径突合せ溶接配管の実応力解析

鈴木 賢治*; 三浦 靖史*; 城 鮎美*; 豊川 秀訓*; 佐治 超爾*; 菖蒲 敬久; 諸岡 聡

材料, 72(4), p.316 - 323, 2023/04

Residual stresses in small-bore butt-welded pipe of austenitic stainless steel have never been measured. It is difficult to obtain a detailed residual stress map of the root welded part, because the gauge volume in neutron diffraction is large. The stress evaluation of the welded part by synchrotron X-rays was also difficult due to the dendritic structure. In this study, a double exposure method (DEM) with high-energy synchrotron X-rays was applied to measuring the details of the residual stress of the welded part, and we succeeded in obtaining the detailed axial and radius stress maps of the root welded part of the plate cut from the welded pipe, though the stress map was under the plane stress condition. The hoop stress map of the butt-welded pipe was obtained using the strain scanning method with neutrons under the triaxial stress state. The axial and radius stress maps under triaxial stress state were made up using the complementary use of the synchrotron X-ray and neutron. As a result, the detailed stress maps of the root welded part of the butt-welded pipe were obtained. The obtained map sufficiently explained the initiation and propagation of SCC.

159 件中 1件目~20件目を表示