Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 108

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Security measures at nuclear fuel facilities, 2; Internal threat countermeasure in cyber-security

Kono, Soma; Yamada, Hiroyuki; Goto, Atsushi*; Yamazaki, Katsuyuki; Nakamura, Hironobu; Kitao, Takahiko

Nihon Kaku Busshitsu Kanri Gakkai Dai-39-Kai Nenji Taikai Rombunshu (Internet), 2 Pages, 2018/11

no abstracts in English

Journal Articles

Feasibility study result of advanced solution measurement and monitoring technology for reprocessing facility

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi*; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A.*; Browne, M.*

Proceeding IAEA Symposium on International Safeguards; Building Future Safeguards Capabilities (Internet), 8 Pages, 2018/11

The IAEA has proposed, in its Research and Development plan (STR-385), the development of technology to enable real-time flow measurement of nuclear material as part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, JAEA and JNFL had previously designed and developed a neutron coincidence based non-destructive assay system to monitor Pu in solution directly after a purification process. To enhance this technology for entire reprocessing facilities, as a feasibility study, JAEA has been tackling development of a new detector to enable monitoring of Pu in solutions with numerous fission products (FPs) as a joint research program with the U.S. DOE. In this study, the High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant (TRP) was used as the test bed. The design information of the HALW storage tank and radiation (type and intensity) were investigated, to develop a Monte Carlo N-Particle Transport Code (MCNP) model. Then, dose rate distribution inside the concrete cell where the HALW tank is located was measured, to enable design of new detectors and check the integrity of the MCNP model and its applicability. Using the newly-designed detectors, $$gamma$$-rays and neutrons could be measured continuously at the outside/inside of the concrete cell, to optimize detector position and the radiation characteristics. The applicability as a Pu-monitoring technology was evaluated, based on the simulation results and $$gamma$$-ray/neutron measurement results. We have found that there is a possibility to monitor the change of Pu amount in solution by combination of $$gamma$$-ray and neutron measurements. The results of this study suggest a feasibility study into the applicability and capability of Pu monitoring to enhance the entire reprocessing facility handling Pu with FPs. In this paper, a summary of the project will be presented.

Journal Articles

Introduction and implementation of physical protection measures including trustworthiness program at Tokai Reprocessing Facilities

Nakamura, Hironobu; Kimura, Takashi; Yamazaki, Katsuyuki; Kitao, Takahiko; Tasaki, Takashi; Iida, Toru

Proceedings of International Conference on Physical Protection of Nuclear Material and Nuclear Facilities (Internet), 9 Pages, 2018/09

After the accident of Fukushima Daiichi Nuclear Power Station, to develop effective security measures based on the lesson learned from such crisis and to meet the IAEA Nuclear Security Recommendations (INFCIRC/225/Rev.5), NRA in Japan made a partial amendment of the regulations concerning the reprocessing activity in 2012. The Tokai reprocessing facility implemented all of those security measures by the end of March 2014. Those new measures help us to keep high degree of security level and contributed to our planned operations to reduce the potential risk of the plant. On the other hand, the trustworthiness program was newly introduced in 2016, based on the trustworthiness policy determined by NRA. The implementing entity of the program is JAEA for the Tokai Reprocessing Facility and is required for both the persons afford unescorted access to Category I and II, CAS/SAS, and the persons afford access to the sensitive information. Those who are involved this program will be judged before engaging the work whether they might act as insider to cause or assist radiological sabotage or unauthorized removal of nuclear material, or leak sensitive information. The program is expected as a measure against insider at reprocessing facilities, and is expected to be enforced around the autumn of 2017. As well as the establishment of security measures, the promoting nuclear security culture for all employees was a big challenge. The Tokai reprocessing facility have introduced several security culture activities, such as case study education of security events done by a small group and putting up the security culture poster and so on. This paper presents introduction and implementation with effectiveness of security measures in the Tokai reprocessing facilities and the future security measures applied to the reprocessing facilities are discussed.

Journal Articles

Demonstration of $$gamma$$-ray pipe-monitoring capabilities for real-time process monitoring safeguards applications in reprocessing facilities

Rodriguez, D.; Tanigawa, Masafumi; Nishimura, Kazuaki; Mukai, Yasunobu; Nakamura, Hironobu; Kurita, Tsutomu; Takamine, Jun; Suzuki, Satoshi*; Sekine, Megumi; Rossi, F.; et al.

Journal of Nuclear Science and Technology, 55(7), p.792 - 804, 2018/07

 Percentile:100(Nuclear Science & Technology)

Nuclear material in reprocessing facilities is safeguarded by random sample verification with additional continuous monitoring applied to solution masses and volume in important tanks to maintain continuity-of-knowledge of process operation. Measuring the unique $$gamma$$ rays of each solution as the material flows through pipes connecting all tanks and process apparatuses could potentially improve process monitoring by verifying the compositions in real time. We tested this $$gamma$$ ray pipe-monitoring method using plutonium-nitrate solution transferred between tanks at the PCDF-TRP. The $$gamma$$ rays were measured using a lanthanum-bromide detector with a list-mode data acquisition system to obtain both time and energy of $$gamma$$-ray. The analysis and results of this measurement demonstrate an ability to determine isotopic composition, process timing, flow rate, and volume of solution flowing through pipes, introducing a viable capability for process monitoring safeguards verification.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Development of gamma spectra detector for high active liquid waste

Sekine, Megumi; Matsuki, Takuya; Tokoro, Hayate; Tsutagi, Koichi; Kitao, Takahiko; Nakamura, Hironobu; Tomikawa, Hirofumi

Proceedings of INMM 59th Annual Meeting (Internet), 10 Pages, 2018/07

In a reprocessing facility, it is necessary to develop a detector which can measure plutonium (Pu) content in the Pu solutions containing fission products (FP) in order to expand the application of Pu monitoring. In order to establish this technology, JAEA has studied a system measure $$gamma$$-rays was utilized since it applicable for Pu monitoring. Ce:GAGG (Ce:Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$) scintillator detector can measure a wide energy range in a high-dose environment and has reasonable resolution. $$gamma$$-ray measurements were performed inside of the concrete cell containing the High Active Liquid Waste tank at the Tokai reprocessing plant. In the spectra, the two significant peaks were measured by the GAGG above 800 keV and were considered to be from Eu-154. There $$gamma$$-ray measurements will be combined with previous neutron measurements and both will be compared to MCNP models for future Pu monitoring technology. This presentation will describe the detector selection, the design system, the results of $$gamma$$-ray spectral measurements and the applicability for Pu monitoring. This project has been carried out under the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese government.

Journal Articles

Discussion of effective insider threat mitigation method at reprocessing plant

Nakamura, Hironobu; Kitao, Takahiko; Yamada, Hiroyuki; Kono, Soma; Kimura, Takashi; Tasaki, Takashi

Proceedings of INMM 59th Annual Meeting (Internet), 9 Pages, 2018/07

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Design of GAGG detector and gamma spectrum measurement

Sekine, Megumi; Matsuki, Takuya; Tokoro, Hayate; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu

Nihon Kaku Busshitsu Kanri Gakkai Dai-38-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2018/04

In a reprocessing facility, it is necessary to develop a detector which is measurable plutonium (Pu) amount in the Pu solution containing the Fission Product (FP) in order to expand the application of Pu monitoring. To investigate $$gamma$$ rays which is applicable for Pu monitoring, Ce:GAGG (Ce: Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$) scintillator which can measure a wide range of energy at high dose and has high resolution (Target: High Active Liquid Waste (HALW)) was newly designed and developed in deal with aim for Pu quantitativeness. $$gamma$$ ray measurement was performed to the HALW in the concrete cell using the detector, and it was confirmed that high energy $$gamma$$ rays (9.5 MeV) could be measured and high energy $$gamma$$ rays spectra over 3 MeV without deriving from FP at the first time. In this presentation, detector design, results of $$gamma$$ ray spectra measurement, applicability evaluation to Pu monitoring and the future plan are presented. This project has been carried out under the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese government.

Journal Articles

Feasibility study of advanced measurement technology for solution monitoring at reprocessing plant; Dose rate measurement for the solution including Pu with FP

Matsuki, Takuya; Yamanaka, Atsushi; Sekine, Megumi; Suzuki, Satoshi*; Yasuda, Takeshi; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A. M.*; Browne, M. C.*

Proceedings of INMM 58th Annual Meeting (Internet), 8 Pages, 2017/07

The Tokai Reprocessing Plant (TRP) has been developing a new detector from 2015 to 2017 for purpose to monitor Pu amount in High Active Liquid Waste (HALW) containing FP. It can make a contribution to an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities because it becomes available to monitor and verify nuclear material movement continuously by a new detector, which has proposed by IAEA. For the second step of this project, we conducted dose rate measurement on the guide rail installing in the cell storing the HALW tank and comparison between measured dose rate distribution and calculation result by MCNP simulation in order to investigate the dose rate distribution which is needed for shielding design of a new detector that is used for radiation (neutron/$$gamma$$ spectrum) measurement in the cell and inquest on the monitoring position of the detector for Pu monitoring. In this paper, we report the result of the dose rate measurement in the cell, improvement of the simulation model which is cleared by comparison between measurement result and calculation result and our future plan.

Journal Articles

$$gamma$$-ray pipe monitoring for comprehensive safeguards process monitoring of reprocessing facilities

Rodriguez, D.; Tanigawa, Masafumi; Mukai, Yasunobu; Isomae, Hidemi; Nakamura, Hironobu; Rossi, F.; Koizumi, Mitsuo; Seya, Michio

Proceedings of INMM 58th Annual Meeting (Internet), 9 Pages, 2017/07

Safegaurding nuclear material at reprocessing facilities utilizes sampling to verify the quantity and process monitoring to maintain continuity-of-knowledge to reduce re-verification. Solution Monitoring and Measurement Systems that determine the solution density and volume are installed at solution tanks, though this only provides indirect verification. To offset this safeguards limitation we propose measuring $$gamma$$ rays from solutions passing through the pipes and at the tanks to provide improved continuous monitoring and direct verification. This can provide both real-time flow measurements and Pu isotopic composition quantification through passive nondestructive assay. This concept was tested by recent experimental studies performed at the Japan Atomic Energy Agency's Plutonium Conversion Development Facility of flowing Pu-nitrate $$gamma$$ rays. This presentation will describe the concept details and analysis of using $$gamma$$ ray pipe monitoring as a capability for real-time safeguards verification.

Journal Articles

Improvement of INVS measurement uncertainty for Pu and U-Pu nitrate solution

Swinhoe, M. T.*; Menlove, H. O.*; Marlow, J. B.*; Makino, Risa; Nakamura, Hironobu

LA-UR-17-23474, 28 Pages, 2017/04

The Inventory Verification Sample system (INVS) has been used for IAEA verification measurement at the Plutonium Conversion Development Facility for MOX powder and Pu solution samples (measurement uncertainty: about 3-5%). If the measurement uncertainty can be improved (to $$sim$$1%), it is expected that the range of usage can be extended and it could reduce the number of destructive analyses. In order to improve the measurement uncertainty for solution samples, we conducted three different types of calibration method that are passive calibration curve method, known-$$alpha$$ method and multiplicity method after optimization of detector parameter and sample position. In the range of concentration of typical solution samples, a good correlation was found between measured doubles and $$^{240}$$Pu effective mass in the three methods. Especially, the result of the conventional calibration curve method and known-$$alpha$$ method met our target uncertainty within 1% (22 hours measurement). Since it is thought that background singles change may affect measurement uncertainty, an additional shielding was installed around the INVS to reduce those effects. This shielding improved measurement uncertainty in known-$$alpha$$ method. The results with this shielding suggests passive calibration method and known-$$alpha$$ method could achieve the target uncertainty within 1% less than 1 hour measurement time.

Journal Articles

Completion of solidification and stabilization for Pu nitrate solution to reduce potential risks at Tokai Reprocessing Plant

Mukai, Yasunobu; Nakamichi, Hideo; Kobayashi, Daisuke; Nishimura, Kazuaki; Fujisaku, Sakae; Tanaka, Hideki; Isomae, Hidemi; Nakamura, Hironobu; Kurita, Tsutomu; Iida, Masayoshi*; et al.

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04

TRP has stored the plutonium in solution state for long-term since the last PCDF operation in 2007 was finished. After the great east Japan earthquake in 2011, JAEA had investigated the risk against potential hazard of these solutions which might lead to make hydrogen explosion and/or boiling of the solution accidents with the release of radioactive materials to the public when blackout. To reduce the risk for storing Pu solution (about 640 kg Pu), JAEA planned to perform the process operation for the solidification and stabilization of the solution by converted into MOX powder at PCDF in 2013. In order to perform PCDF operation without adaption of new safety regulation, JAEA conducted several safety measures such as emergency safety countermeasures, necessary security and safeguards (3S) measures with understanding of NRA. As a result, the PCDF operation had stared on 28th April, 2014, and successfully completed to convert MOX powder on 3rd August, 2016 for about 2 years as planned.

Journal Articles

Development and implementation of GloveBox Cleanout Assistance Tool (BCAT) to detect the presence of MOX by computational approach

Nakamura, Hironobu; Nakamichi, Hideo; Mukai, Yasunobu; Hosoma, Takashi; Kurita, Tsutomu; LaFleur, A. M.*

Proceedings of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2017) (USB Flash Drive), 7 Pages, 2017/04

In order to maintain facility nuclear material accountancy (NMA) and safeguards properly, to understand where and how much holdup deposit in the process is presence is very important for the cleanout before PIT. JAEA and LANL developed a GloveBox Cleanout Assistance Tool (BCAT) to help cleanout (MOX powder recovering in a glovebox) for invisible holdup effectively by computational approach which is called distributed source-term approach (DSTA). The BCAT tool is a simple neutron measurement slab detectors and helps operator to find locations of holdup. To know the holdup location and the activity from the neutron measurements, the relation between BCAT measurements results at predetermined positions (57 positions) and source voxels (53 voxels) that we want to know the holdup activity was mathematically defined as a matrix by the MCNPX simulation. The model of MCNPX for entire process is very precisely established. We have implemented and experimentally proved that the BCAT tool can direct the operator to recoverable holdup that would otherwise be accounted for as MUF. Reducing facility MUF results in a direct improvement of the facility NMA. The BCAT enables the staff to significantly improve their knowledge of the locations of residual holdup in the process area. JAEA would like to use this application for dismantling of the glovebox with transparency in the future.

Journal Articles

Field test and evaluation of $$^{3}$$He replacement technologies; Development of HLNB counter

Tanigawa, Masafumi; Mukai, Yasunobu; Nakamura, Hironobu; Kurita, Tsutomu; Henzlova, D.*; Menlove, H. O.*

Dai-37-Kai Kaku Busshitsu Kanri Gakkai Nippon Shibu Nenji Taikai Rombunshu (CD-ROM), 9 Pages, 2017/02

no abstracts in English

Journal Articles

Operator's contribution on the improvement of inspection scheme for the PCDF operation

Shimizu, Yasuyuki; Makino, Risa; Mukai, Yasunobu; Ishiyama, Koichi; Kurita, Tsutomu; Nakamura, Hironobu

Dai-37-Kai Kaku Busshitsu Kanri Gakkai Nippon Shibu Nenji Taikai Rombunshu (CD-ROM), 9 Pages, 2017/02

no abstracts in English

Journal Articles

Feasibility study of advanced technology for Pu with FP solution monitoring; Overview of research plan and modelling for simulation

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi; Tanigawa, Masafumi; Yasuda, Takeshi; Yamanaka, Atsushi; Tsutagi, Koichi; Nakamura, Hironobu; Tomikawa, Hirofumi; LaFleur, A. M.*; et al.

EUR-28795-EN (Internet), p.788 - 796, 2017/00

The IAEA has proposed in its long-term R&D plan, the development of technology to enable real-time flow measurement of nuclear material as a part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, JAEA has designed and developed a neutron coincidence based nondestructive assay system to monitor Pu directly in solutions which is after purification process and contains very little fission products (FPs). A new detector to enable monitoring of Pu in solutions with numerous FPs is being developed as a joint research program with U.S. DOE at the High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant. As the first step, the design information of HALW tank was investigated and samples of HALW was taken and analyzed for Pu concentration and isotope composition, density, content of dominant nuclides emitting $$gamma$$ ray or neutron, etc. in order to develop a Monte Carlo N-Particle Transport Code (MCNP) of the HALW tank. In addition, $$gamma$$ ray source spectra simulated by Particle and Heavy Ion Transport code System (PHITS) was developed by extracting peaks from the analysis data with germanium detector. These outputs are used for the fundamental data in the MCNP model which is then used to evaluate the type of detector, shielding design and measurement positions. In order to evaluate available radiations to measure outside the cell wall, continuous $$gamma$$ ray and neutron measurement were carried out and the results were compared to the simulation results. The measurement results showed that there are no FP peaks above 3 MeV. This paper presents an overview of the research plan, characteristics of HALW, development of source term for MCNP, simulation of radiation dose from the HALW tank and radiation measurement results at outside of cell wall.

Journal Articles

Field test of a full scale $$^{3}$$He-alternative HLNC-type counter; High Level Neutron counter-Boron (HLNB)

Henzlova, D.*; Menlove, H. O.*; Tanigawa, Masafumi; Mukai, Yasunobu; Nakamura, Hironobu

EUR-28795-EN (Internet), p.313 - 323, 2017/00

Facing the depletion of $$^{3}$$He gas supply and the continuing uncertainty of options for future resupply, Los Alamos National Laboratory (LANL) designed and built a $$^{3}$$He free full scale thermal neutron coincidence counter based on boron-lined parallel-plate proportional technology. The counter was designed as a direct alternative to High Level Neutron Coincidence counter (HLNC-II). This paper provides a summary of performance evaluation of HLNB under realistic field conditions at Plutonium Conversion Development Facility (PCDF) of Japan Atomic Energy Agency (JAEA). The field test included a range of small to large mass MOX materials that represent realistic process samples and provided key insight on and validation of the feasibility of HLNB as a safeguards instrument in realistic facility environment. In particular, the results of verification measurements demonstrate that HLNB is capable to satisfy ITV expected for HLNC-II-type counter of 2.1% in 300s measurement time.

Journal Articles

Development of alternative $$^3$$He NDA detector system

Koizumi, Mitsuo; Sakasai, Kaoru; Kureta, Masatoshi; Nakamura, Hironobu

Nippon Genshiryoku Gakkai-Shi, 58(11), p.642 - 646, 2016/11

no abstracts in English

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Composition research of high active liquid waste and radiation measurement results on the surface of cell

Matsuki, Takuya; Masui, Kenji; Sekine, Megumi; Tanigawa, Masafumi; Yasuda, Takeshi; Tsutagi, Koichi; Ishiyama, Koichi; Nishida, Naoki; Horigome, Kazushi; Mukai, Yasunobu; et al.

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

The International Atomic Energy Agency (IAEA) has proposed in its long-term research and development (R&D) plan, development of a real-time measurement technology to monitor and verify nuclear material movement continuously as part of an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities. Since the Tokai Reprocessing Plant (TRP) has solutions containing both Pu and fission products (FP), a new detector development project to monitor Pu with FP is being carried out from 2015 to 2017. This project is mainly conducted in the High Active Liquid Waste Storage (HALWS) in the TRP. For the first step of this project, as the confirmation of composition of high active liquid waste (HALW) to evaluate neutron/$$gamma$$-ray emitted from solution in the selected HALW tank which has the most amount of Pu in HALW tanks at the TRP, we took HALW sample and conducted $$gamma$$-ray spectrum measurement for HALW. As a study of detector setting location, to survey the available neutron/$$gamma$$-ray (i.e. intensity) at the outside surface of the cell where HALW tank is located, we implemented continuous measurement by neutron/$$gamma$$-ray detector. In this paper, we report three $$gamma$$-ray peaks related with $$^{238}$$Pu and $$^{239}$$Pu measured in the composition research of HALW, which is needed to identify Pu amount by the new detector that we are developing and the result of radiation measurement on the surface of the cell.

Journal Articles

Operator's contribution on the improvement of RII scheme against the process operation at PCDF

Nakamura, Hironobu; Shimizu, Yasuyuki; Makino, Risa; Mukai, Yasunobu; Ishiyama, Koichi; Kurita, Tsutomu; Ikeda, Atsushi*; Yamaguchi, Katsuhiro*

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

Regarding the Integrated Safeguards (IS) in Japan, the implementation of IS has been started on September 2004, and the concept has been introduced to the JNC-1 facilities since August 2008. Then, random interim inspection with short notice and reducing person-days of inspection (PDI) was introduced instead of traditional scheduled IIV in order to improve deterrence of the nuclear material diversion with timeliness goal. And it was agreed that it should be evaluated and reviewed because RII was designed when inter-campaign. In JAEA, we decided to restart PCDF campaign to reduce potential safety risks of reprocessing facilities. To adopt the RII scheme to the process operation in campaign, JAEA proposed a new scheme to JSGO and IAEA without increasing PDI and reducing detection probability. As a result of the discussion, it was agreed and successfully introduced since March 2014. The new scheme for PCDF consists of scheduled inspection (fixed-day RII), reduction of estimated material for the verification, implementation of remote monitoring with data provision, improvement of operational status check list, introduction of NRTA and MC&A data declaration with timeliness. Though the operator's workloads for information provision were increased, we could manage to balance IS requirement with implementation of our operation successfully. This contribution was helped to safeguards implementation and our operation for 2 years.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Overview and research plan

Sekine, Megumi; Matsuki, Takuya; Tanigawa, Masafumi; Tsutagi, Koichi; Mukai, Yasunobu; Shimizu, Yasuyuki; Nakamura, Hironobu; Tomikawa, Hirofumi

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

The International Atomic Energy Agency (IAEA) has proposed in its long-term research and development plan, development of a real-time measurement technology to monitor and verify nuclear material movement continuously as part of an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities. In the reprocessing plant, since solutions containing both Pu and FP exist, a new detector development project to monitor Pu with FP is being carried out from 2015 to 2017. This project is mainly conducted in the High Active Liquid Waste Storage (HALWS) in Tokai Reprocessing Plant (TRP). In this paper, an overview of the technology development, simulation results of preliminary evaluation of the characteristics of radiation emitted from the HALW tank at TRP, and the future research plan are presented.

108 (Records 1-20 displayed on this page)