Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 42

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Root endophytic bacterial and fungal communities in a natural hot desert are differentially regulated in dry and wet seasons by stochastic processes and functional traits

Taniguchi, Takeshi*; Isobe, Kazuo*; Imada, Shogo*; Eltayeb, M. M.*; Akaji, Yasuaki*; Nakayama, Masataka; Allen, M. F.*; Aronson, E. L.*

Science of the Total Environment, 899, p.165524_1 - 165524_13, 2023/11

 Times Cited Count:3 Percentile:84.15(Environmental Sciences)

Dryland ecosystems experience seasonal cycles of severe drought and moderate precipitation. Desert plants typically have patchy distributions, and many may develop symbiotic relationships with root endophytic microbes to survive under the repeated wet and extremely dry conditions. Although community coalescence has been found in many systems, the colonization by functional microbes and its relationship to seasonal transitions in arid regions are not well understood. Here we examined root endophytic microbial taxa, and their traits in relation to their root colonization, during the dry and wet seasons in a hot desert of the southwestern United States. We used high-throughput DNA sequencing of 16S rRNA and ITS gene profiling of five desert shrubs, and analyzed the seasonal change in endophytic microbial lineages. In summer, Actinobacteria increased, although this was not genus-specific. For fungi, Glomeraceae selectively increased in summer. In winter, Gram-negative bacterial genera, including those capable of nitrogen fixation and plant growth promotion, increased. Neutral model analysis revealed a strong stochastic influence on endophytic bacteria but a weak effect for fungi, especially in summer. The taxa with higher frequency than that predicted by the neutral model shared environmental adaptability and symbiotic traits, whereas the frequency of pathogenic fungi was at or under the predicted value. These results suggest that community assembly of bacteria and fungi is regulated differently. The bacterial community was affected by stochastic and deterministic processes via the bacterial response to drought (response trait) and beneficial effect on plants (effect trait). For fungi, mycorrhizal fungi were selected by plants in summer. The regulation of beneficial microbes by plants in both dry and wet seasons suggests the presence of plant-soil positive feedback in this natural desert ecosystem.

Journal Articles

Devil's staircase transition of the electronic structures in CeSb

Kuroda, Kenta*; Arai, Yosuke*; Rezaei, N.*; Kunisada, So*; Sakuragi, Shunsuke*; Alaei, M.*; Kinoshita, Yuto*; Bareille, C.*; Noguchi, Ryo*; Nakayama, Mitsuhiro*; et al.

Nature Communications (Internet), 11, p.2888_1 - 2888_9, 2020/06

 Times Cited Count:20 Percentile:75.49(Multidisciplinary Sciences)

Journal Articles

Enhancement of element production by incomplete fusion reaction with weakly bound deuteron

Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.

Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07

 Times Cited Count:8 Percentile:56.2(Physics, Multidisciplinary)

Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for $$^{107}$$Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.

Journal Articles

Experimental determination of the topological phase diagram in Cerium monopnictides

Kuroda, Kenta*; Ochi, Masayuki*; Suzuki, Hiroyuki*; Hirayama, Motoaki*; Nakayama, Mitsuhiro*; Noguchi, Ryo*; Bareille, C.*; Akebi, Shuntaro*; Kunisada, So*; Muro, Takayuki*; et al.

Physical Review Letters, 120(8), p.086402_1 - 086402_6, 2018/02

 Times Cited Count:50 Percentile:91.96(Physics, Multidisciplinary)

Journal Articles

Element distribution measurement in incineration ash using micro-PIXE analysis

Abe, Tomohisa; Shimazaki, Takejiro; Nakayama, Takuya; Osone, Osamu; Osugi, Takeshi; Nakazawa, Osamu; Yuri, Yosuke*; Yamada, Naoto*; Sato, Takahiro*

QST-M-2; QST Takasaki Annual Report 2015, P. 83, 2017/03

no abstracts in English

JAEA Reports

Synthesized research report in the second mid-term research phase, Mizunami Underground Research Laboratory Project, Horonobe Underground Research Laboratory Project and Geo-stability Project (Translated document)

Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; et al.

JAEA-Review 2016-014, 274 Pages, 2016/08

JAEA-Review-2016-014.pdf:44.45MB

We synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second midterm research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase).

JAEA Reports

Synthesized research report in the second mid-term research phase; Mizunami Underground Research Laboratory Project, Horonobe Underground Research Laboratory Project and Geo-stability Project

Hama, Katsuhiro; Mizuno, Takashi; Sasao, Eiji; Iwatsuki, Teruki; Saegusa, Hiromitsu; Sato, Toshinori; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Yokota, Hideharu; et al.

JAEA-Research 2015-007, 269 Pages, 2015/08

JAEA-Research-2015-007.pdf:68.65MB
JAEA-Research-2015-007(errata).pdf:0.07MB

We have synthesised the research results from Mizunami/Horonobe URLs and geo-stability projects in the second mid-term research phase. It could be used as technical bases for NUMO/Regulator in each decision point from sitting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High quality construction techniques and field investigation methods have been developed and implemented and these will be directly applicable to the National Disposal Program (along with general assessments of hazardous natural events and processes). It will be crucial to acquire technical knowledge on decisions of partial backfilling and final closure by actual field experiments in Mizunami/Horonobe URLs as main themes for the next phases.

Journal Articles

Novel electrothermodynamic power generation

Kim, Y.*; Kim, J.*; Yamanaka, Satoru*; Nakajima, Akira*; Ogawa, Takashi*; Serizawa, Takeshi*; Tanaka, Hirohisa*; Baba, Masaaki*; Fukuda, Tatsuo; Yoshii, Kenji; et al.

Advanced Energy Materials, 5(13), p.1401942_1 - 1401942_6, 2015/07

 Times Cited Count:18 Percentile:60.39(Chemistry, Physical)

An innovative electro-thermodynamic cycle based on temporal temperature variations using pyroelectric effect has been presented. Practical energy is successfully generated in both $textit{in-situ}$ synchrotron X-ray diffraction measurements under controlled conditions and $textit{Operando}$ real engine dynamometer experiments. The main generating origin is revealed as a combination of a crystal structure change and dipole change phenomenon corresponds to the temperature variation. In particular, the electric field induced 180$$^circ$$ domain switching extremely improves generating power, and the true energy breakeven with temperature variation is firstly achieved.

Journal Articles

Magnetic and electronic properties of URu$$_2$$Si$$_2$$ revealed by comparison with nonmagnetic references ThRu$$_2$$Si$$_2$$ and LaRu$$_2$$Si$$_2$$

Emi, Naoya*; Hamabata, Ryosuke*; Nakayama, Daisuke*; Miki, Toshihiro*; Koyama, Takehide*; Ueda, Koichi*; Mito, Takeshi*; Kohori, Yo*; Matsumoto, Yuji*; Haga, Yoshinori; et al.

Journal of the Physical Society of Japan, 84(6), p.063702_1 - 063702_4, 2015/06

 Times Cited Count:10 Percentile:58.48(Physics, Multidisciplinary)

JAEA Reports

User's guide of cement solidification test for incinerated ash

Nakayama, Takuya; Kawato, Yoshimi; Osugi, Takeshi; Shimazaki, Takejiro; Hanada, Keiji; Suzuki, Shinji; Sakakibara, Tetsuro; Nakazawa, Osamu; Meguro, Yoshihiro

JAEA-Technology 2014-046, 56 Pages, 2015/03

JAEA-Technology-2014-046.pdf:7.61MB

The combustible and flame-retardant radioactive wastes generated as a result of the research activities in Japan Atomic Energy Agency (JAEA) are incinerating to reduce their volume. The incinerated ash is planned to be solidified using cement for disposal. Since the properties of ashes generated in each institute of JAEA are varied with the type of incinerator and the wastes to be incinerated, it is necessary to do fundamental solidification tests in each institute to decide operating conditions of the planning cement solidification facility. It is important to standardize evaluating methods of cement and solidified waste because some characters depend on measuring method. This user's guide have been prepared how to decide the cement solidifying conditions of ash to design the cement solidification facility in JAEA. Requirements on the regulations of solidified radioactive waste have been examined and seven technical criteria, e.g. compressive strength, fluidity, have been selected as characters to be evaluated. Some empirical notes about selection of cement, admixtures, procedure on making a test piece, evaluation of expanding, compressive strength, solubility have been described. The strategy of tests and tips for finding optimized solidification condition has been summarized. Finally the example of optimized conditions satisfied the requirements and some problems to be solved have been described.

JAEA Reports

Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory Project, 2 (Contract research)

Nakayama, Masashi; Kobayashi, Yasushi; Matsuda, Takeshi*; Noda, Masaru*; Iriya, Keishiro*; Takeda, Nobufumi*

JAEA-Research 2009-035, 70 Pages, 2009/11

JAEA-Research-2009-035.pdf:11.27MB

In Horonobe Underground Research Center construction of underground facility began in 2005 and construction practicality test with HFSC (Highly Fly-ash contained Silica-fume Cement) is planned in a part of the gallery. Before HFSC will be placed in the gallery it is necessary to validate that HFSC has performance under the actual construction. The research results in 2007 were as follows. As corrosion behavior in HFSC, reinforced concrete specimen with HFSC 226 have been exposed to off-shore condition at in saline water and splashed zone and analyzed corrosion rate and chloride intrusion, and they were summarized. Service life time of HFSC reinforced concrete was assessed more than 50 years until cracking due to corrosion is generated. pH and components of solid and liquid phase which were made in 2002, and stored in water were analyzed. And cement paste of shotcrete which are made in 2006 were also analyzed. In this pH of shotcrete is lower than other in situ concrete since accelerating agent may act as decreasing factor of pH. The results obtained from this ten year's study were summarized on shotcerete, in situ concrete and grouting. Based on the summery, method of quality control, such as testing method, frequency, and standards so on, were investigated.

JAEA Reports

Application study on low alkaline cementitious materials for deep geological repository of high level radioactive wastes, 2; Organization of previous finding and understanding of material properties of low alkaline cement (Joint research)

Kobayashi, Yasushi; Yamada, Tsutomu; Naito, Morimasa; Yui, Mikazu; Nakayama, Masashi; Sato, Haruo; Nishida, Takahiro*; Hironaga, Michihiko*; Yamamoto, Takeshi*; Sugiyama, Daisuke*; et al.

JAEA-Research 2009-013, 70 Pages, 2009/06

JAEA-Research-2009-013.pdf:8.85MB

Cementitious materials will be used to ensure construction and operational safety and work efficiency in a deep geological repository. The low alkaline cement has been developed to reduce uncertainties due to hyper alkaline for the long-term safety performance of the repository system. Functions of cementitious material required in each phase of repository construction, operation and closure were summarized in a separate report entitled "Application Study on Low Alkaline Cementitious Materials for Deep Geological Repository of High Level Radioactive Wastes (Phase I) "In this report, properties of low alkaline cement/concrete which have been developed both at home and abroad, and recipes of the low alkaline concrete taken account of application to the repository component have been investigated. Fresh and hardened properties of the low alkaline cement are equivalent to the OPC and the low alkaline cement has an advantage over OPC in terms of leaching resistance. The HFSC developed by JAEA, which belongs to a pozzolanic type low alkaline cement will be able to apply to the shotcrete and the lining concrete by choosing an adequate recipe. Clarification of influences of the chemical composition of groundwater on leachate properties of the hydrates, examination of pH measurement of cement leachate, evaluation of corrosion behavior of rebar embedded in the HFSC concrete are raised as open questions for future activities.

JAEA Reports

Application study on low alkaline cementitious materials for deep geological repository of high level radioactive wastes, 1; Requirements for use of cementitious materials in deep geological repository system (Joint research)

Kobayashi, Yasushi; Yamada, Tsutomu; Naito, Morimasa; Yui, Mikazu; Nakayama, Masashi; Sato, Haruo; Nishida, Takahiro*; Hironaga, Michihiko*; Yamamoto, Takeshi*; Sugiyama, Daisuke*; et al.

JAEA-Research 2008-112, 43 Pages, 2009/03

JAEA-Research-2008-112.pdf:4.58MB

In deep geological repository, use of cementitious material for rock support, lining, and grouting is essential for construction and operation and possibly raises in groundwater pH due to leachate from the cements. Since this hyperalkaline condition may lead to degradation of barriers, there is concern that it gives significant impact on long-term safety performance of the repository system. Because of these backgrounds, developments of low alkaline cement have been conducted both at home and abroad. JAEA is now planning to conduct an in-situ test for shotcreting using low alkaline cement at the Horonobe URL. On the other hand, CRIEPI has studied and developed cementitious materials for disposal of radioactive wastes. This joint research report summarizes requirements and expected performance of cementitious materials in repository taking account of surrounding conditions in each stage of the repository program so as to reflect them to further development of the low alkaline cement.

JAEA Reports

Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory Project (Contract research)

Matsuda, Takeshi*; Noda, Masaru*; Iriya, Keishiro*; Konishi, Kazuhiro*; Nakayama, Masashi; Kobayashi, Yasushi

JAEA-Research 2007-089, 139 Pages, 2008/05

JAEA-Research-2007-089.pdf:13.57MB

In Horonobe Underground Research Center construction of underground facility began in 2005 and construction practicality test with HFSC (Highly Fly-ash contained Silica-fume Cement) is planned in a part of the gallery. Before the HFSC will be contracted in the gallery it is necessary to check that the HFSC has performance under the actual construction. The main work of this Japanese fiscal year is making a detailed test plan for the HSFC construction practicality, that is scheduled after 2007 and laboratory tests on lowering behavior of pH in the HFSC concrete were conducted. On the construction practicality test with low alkaline concrete, HFSC in-situ experiment plan was studied in case using HSFC424N as shotcrete. The aims of the in-situ test are the validation in applicability of low alkaline concrete as a support member for underground opening in the realistic geological environment and building the method to evaluate influence to the surrounding geological environment. The location of the in-situ test is in the connection tunnel of a depth of 140m and the geology is the Koetoi formation. The period of the test is approximately 10 years. The test plan was designed to be able to make a comparison with Ordinary Portland Cement. As it is necessary to confirm the strength property of the HFSC concrete with materials procured at construction site, strength of the base concrete using local procured fine aggregate and coarse aggregate based on the result of the selection of mix proportion in 2005 research was checked. On laboratory tests on lowering behavior of pH in HFSC concrete, the pH of immersion fluid was measured and components of the immersion fluid and the solid phase were analyzed using test specimens in a long-term immersion test which had been continued since 2005.

JAEA Reports

Development and management of the knowledge base for the geological disposal technology; Annual report 2006

Umeda, Koji; Oi, Takao; Osawa, Hideaki; Oyama, Takuya; Oda, Chie; Kamei, Gento; Kuji, Masayoshi*; Kurosawa, Hideki; Kobayashi, Yasushi; Sasaki, Yasuo; et al.

JAEA-Review 2007-050, 82 Pages, 2007/12

JAEA-Review-2007-050.pdf:28.56MB

This report shows the annual report which shows the summarized results and topic outline of each project on geological disposal technology in the fiscal year of 2006.

JAEA Reports

In situ test plan for concrete materials using low alkaline cement at Horonobe URL

Kobayashi, Yasushi; Yamada, Tsutomu; Nakayama, Masashi; Matsui, Hiroya; Matsuda, Takeshi*; Konishi, Kazuhiro*; Iriya, Keishiro*; Noda, Masaru*

JAEA-Review 2007-007, 42 Pages, 2007/03

JAEA-Review-2007-007.pdf:3.12MB

Shotcrete and lining will be used for safety under construction and operational period in HLW repository. Concrete is a kind of composite material which is constituted by aggregate, cement and other mixture. Low alkaline cement has been developed from the viewpoint of long term stability of the barrier systems which would be influenced by high alkaline arising from cement material. HFSC is one of a low alkaline cement. It has been developed in Japan Atomic Energy Agency. JAEA are now implementing the construction of the under ground research laboratory (URL) at Horonobe. This report shows the in situ test plan for shotcrete using HFSC at Horonobe URL with identifying requirements for cement materials to be used in HLW repository, and also reviews major literatures of low alkaline cement. This in situ test plan is aiming to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on.

JAEA Reports

Announced document collection of the 1st Information Exchange Meeting on Radioactive Waste Disposal Research Network (Joint research)

Nakayama, Shinichi; Nagasaki, Shinya*; Inagaki, Yaohiro*; Oe, Toshiaki*; Sasaki, Takayuki*; Sato, Seichi*; Sato, Tsutomu*; Tanaka, Satoru*; Tochiyama, Osamu*; Nagao, Seiya*; et al.

JAEA-Conf 2007-003, 120 Pages, 2007/03

JAEA-Conf-2007-003.pdf:53.18MB

The 1st information exchange meeting on Radioactive Waste Disposal Research Network was held in Nuclear Science Research Institute of Japan Atomic Energy Agency on August 4, 2006. Radioactive Waste Disposal Research Network was established by under Interorganization Atomic Energy Research Program of Japan Atomic Energy Agency, and the objective is to bring both research infrastructures and human expertise in Japan to an adequate performance level, thereby contributing to the development of the fundamental research area in the field of radioactive waste disposal. This lecture material is a collection of research presentations and discussions during the information exchange meeting.

Journal Articles

Reduction of energetic particle loss by ferritic steel inserts in ITER

Tobita, Kenji; Nakayama, Takeshi*; Konovalov, S. V.; Sato, Masayasu

Plasma Physics and Controlled Fusion, 45(2), p.133 - 143, 2003/02

 Times Cited Count:35 Percentile:70.78(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Investigation on ripple loss reduction by ferritic steel plate insertion in JFT-2M; Comparison between experimental and computational data

Sato, Masayasu; Kimura, Haruyuki; Miura, Yukitoshi; Nakayama, Takeshi*; Tobita, Kenji; Kawashima, Hisato; Tsuzuki, Kazuhiro; Isei, Nobuaki

Nuclear Fusion, 42(8), p.1008 - 1013, 2002/08

 Times Cited Count:4 Percentile:14.34(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Demonstration of ripple reduction by ferritic steel board insertion in JFT-2M

Kawashima, Hisato; Sato, Masayasu; Tsuzuki, Kazuhiro; Miura, Yukitoshi; Isei, Nobuaki; Kimura, Haruyuki; Nakayama, Takeshi*; Abe, Mitsushi*; Darrow, D. S.*; JFT-2M Group

Nuclear Fusion, 41(3), p.257 - 263, 2001/03

 Times Cited Count:37 Percentile:72.57(Physics, Fluids & Plasmas)

no abstracts in English

42 (Records 1-20 displayed on this page)