Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 153

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Present status of JAEA's R&D toward HTGR deployment

Shibata, Taiju; Nishihara, Tetsuo; Kubo, Shinji; Sato, Hiroyuki; Sakaba, Nariaki; Kunitomi, Kazuhiko

Nuclear Engineering and Design, 398, p.111964_1 - 111964_4, 2022/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Japan Atomic Energy Agency (JAEA) has been promoting the research and development (R&D) of High Temperature Gas-cooled Reactor (HTGR). R&D on reactor technologies is carried out by using High Temperature engineering Test Reactor (HTTR). The HTTR was resumed without significant reinforcements in 2021. On January 2022, a safety demonstration test under the OECD/NEA LOFC project was carried out. JAEA is promoting R&D on a carbon-free hydrogen production by thermochemical water splitting Iodine-Sulfur process (IS process). JAEA conducts design study for various HTGR systems toward commercialization. A new test program about demonstration of hydrogen production by the HTTR was launched. Steam methane reforming hydrogen production system was selected for the first demonstration by 2030.

Journal Articles

Present status of research and development on HTTR

Nishihara, Tetsuo

Denki, (827), p.42 - 44, 2022/08

no abstracts in English

Journal Articles

Restart of HTTR

Nishihara, Tetsuo

Genshiryoku Kiko, Genken OB Kai Kaiho, 80-Go, P. 2, 2022/01

HTTR restarted in July 2021. We introduce the response to the new safety regulatory requirements and the future test plan of HTTR.

Journal Articles

Contribution to carbon neutral by HTGR

Nishihara, Tetsuo

Genshiryoku No Shinchoryu, 2-2, p.30 - 36, 2021/08

JAEA is conducting the research and development on HTGR and hydrogen production using it. We are aiming to realize a system that uses HTGR as a heat source and produces a large amount of hydrogen, which is a clean energy in the future, at low cost without carbon dioxide emission. This system can greatly contribute to the realization of carbon neutral stated by Japanese Government. This report describes the current status of research and development of HTGR including the position of HTGR in the national policy and the current status in the overseas.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Research and development activities of JAEA for HTGR system realization

Mineo, Hideaki; Nishihara, Tetsuo; Ohashi, Hirofumi; Goto, Minoru; Sato, Hiroyuki; Takegami, Hiroaki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(9), p.504 - 508, 2020/09

High-Temperature Gas-cooled Reactor (HTGR) is one of thermal neutron reactor-type that employs helium gas coolant and graphite moderator. It has excellent inherent safety and can supply high-temperature heat which can be used not only for electric power generation but also for a wide range of application such as hydrogen production. Therefore, HTGR is expected to be an effective technology for reducing greenhouse gases in Japan as well as overseas. In this paper, we will introduce the forefront of technological development that JAEA is working toward the realization of an HTGR system consisting of a high temperature gas reactor and heat utilization facilities such as gas-turbine power generation and hydrogen production.

Journal Articles

Trend of high temperature gas-cooled reactor development in the world, international cooperation and strategy

Nishihara, Tetsuo; Shibata, Taiju; Inaba, Yoshitomo

Hozengaku, 18(1), p.30 - 34, 2019/04

We explain the current status of High Temperature Gas-cooled Reactor (HTGR) development in the world and international cooperation between Japan Atomic Energy Agency (JAEA) and these countries. We introduce the concept of Japanese HTGR technology deployment by using international cooperation.

Journal Articles

Uranium-based TRU multi-recycling with thermal neutron HTGR to reduce environmental burden and threat of nuclear proliferation

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi; Yan, X.; Nishihara, Tetsuo; Tsubata, Yasuhiro; Matsumura, Tatsuro

Journal of Nuclear Science and Technology, 55(11), p.1275 - 1290, 2018/11

AA2017-0752.pdf:1.25MB

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To reduce environmental burden and thread of nuclear proliferation, multi-recycling fuel cycle with High Temperature Gas-cooled Reactor (HTGR) has been investigated. Those problems are solved by incinerating TRans Uranium (TRU) nuclides, which is composed of plutonium and Minor Actinoide (MA), and there is concept to realize TRU incineration by multi-recycling with Fast Breeder Reactor (FBR). In this study, multi-recycling is realized even with thermal reactor by feeding fissile uranium from outside of the fuel cycle instead of breeding fissile nuclide. In this fuel cycle, recovered uranium by reprocessing and natural uranium are enriched and mixed with recovered TRU by reprocessing and partitioning to fabricate fresh fuels. The fuel cycle was designed for a Gas Turbine High Temperature Reactor (GTHTR300), whose thermal power is 600 MW, including conceptual design of uranium enrichment facility. Reprocessing is assumed as existing Plutonium Uranium Redox EXtraction (PUREX) with four-group partitioning technology. As a result, it was found that the TRU nuclides excluding neptunium can be recycled by the proposed cycle. The duration of potential toxicity decaying to natural uranium level can be reduced to approximately 300 years, and the footprint of repository for High Level Waste (HLW) can be reduced by 99.7% compared with GTHTR300 using existing reprocessing and disposal technology. Suppress plutonium is not generated from this cycle. Moreover, incineration of TRU from Light Water Reactor (LWR) cycle can be performed in this cycle.

JAEA Reports

Excellent feature of Japanese HTGR technologies

Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju; Ohashi, Hirofumi; Kubo, Shinji; Inaba, Yoshitomo; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; et al.

JAEA-Technology 2018-004, 182 Pages, 2018/07

JAEA-Technology-2018-004.pdf:18.14MB

Research and development on High Temperature Gas-cooled Reactor (HTGR) in Japan started since late 1960s. Japan Atomic Energy Agency (JAEA) in cooperation with Japanese industries has researched and developed system design, fuel, graphite, metallic material, reactor engineering, high temperature components, high temperature irradiation and post irradiation test of fuel and graphite, high temperature heat application and so on. Construction of the first Japanese HTGR, High Temperature engineering Test Reactor (HTTR), started in 1990. HTTR achieved first criticality in 1998. After that, various test operations have been carried out to establish the Japanese HTGR technologies and to verify the inherent safety features of HTGR. This report presents several system design of HTGR, the world-highest-level Japanese HTGR technologies, JAEA's knowledge obtained from construction, operation and management of HTTR and heat application technologies for HTGR.

JAEA Reports

Research on demand of HTGR for investigation of introduction scenario and investigation on heat balance of HTGR

Fukaya, Yuji; Kasahara, Seiji; Mizuta, Naoki; Inaba, Yoshitomo; Shibata, Taiju; Nishihara, Tetsuo

JAEA-Research 2018-004, 38 Pages, 2018/06

JAEA-Research-2018-004.pdf:1.81MB

The demand of HTGR to investigate its introduction scenario and heat balance of HTGR have been researched. First, previous studies of HTGR demand were researched. Next, heat balance of GTHTR300, a commercial scale HTGR design, and its characteristics were researched. By using this information, installation number of HTGR to suit for demand in Japan are evaluated. In addition, heat balance evaluation code was developed in this study.

JAEA Reports

Assessment report on research and development activities in FY2017; Activity "Research and development on high temperature gas-cooled reactor and related heat application technology" (Annual report)

Tatematsu, Kenji; Nishihara, Tetsuo

JAEA-Evaluation 2018-001, 71 Pages, 2018/06

JAEA-Evaluation-2018-001.pdf:6.84MB

Executive Director of Sector of Nuclear Science Research in Japan Atomic Energy Agency consulted with the "Evaluation Committee of Research Activities for High Temperature Gas-cooled Reactor and Related Hydrogen Production Technology" (hereinafter referred to as "Evaluation Committee"), which consists of specialists in the fields of the evaluation subjects of high temperature gas-cooled reactor and related heat application technology, about the relevance of the management and research activities of the HTGR Hydrogen and Heat Application Research Center in FY2017.Research activity for FY2017, The Evaluation Committee concluded with a score of S for "Conformity confirmation conformity to HTTR's new regulatory standards", "Cooperation with industry" and "Promotion of international cooperation". Therefore, the Evaluation Committee concluded with a score of A for the overall activity by evaluating that more results than originally required were acquired. Also, regarding the research plan for FY2018, it was judged appropriate. This report summarizes the members of the Evaluation Committee, outlines the method, the review process for procedure of the assessment and that result.

Journal Articles

Optimization of disposal method and scenario to reduce high level waste volume and repository footprint for HTGR

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi; Nishihara, Tetsuo; Tsubata, Yasuhiro; Matsumura, Tatsuro

Annals of Nuclear Energy, 116, p.224 - 234, 2018/06

AA2017-0381.pdf:0.87MB

 Times Cited Count:1 Percentile:14.24(Nuclear Science & Technology)

Optimization of disposal method and scenario to reduce volume of High Level Waste (HLW) and the footprint in a geological repository for High Temperature Gas-cooled Reactor (HTGR) has been performed. It was found that HTGR has great advantages to reducing HLW volume and its footprint, which are high burn-up, high thermal efficiency and pin-in-block type fuel, compared with those of LWR and has potential to reduce those more in the previous study. In this study, the scenario is optimized, and the geological repository layout is designed with the horizontal emplacement based on the KBS-3H concept instead of the vertical emplacement based on KBS-3V concept employed in the previous study. As a result, for direct disposal, the repository footprint can be reduced by 20 % by employing the horizontal without change of the scenario. By extending 40 years for cooling time before disposal, the footprint can be reduced by 50 %. For disposal with reprocessing, the number of canister generation can be reduced by 20 % by extending cooling time of 1.5 years between the discharge and reprocessing. The footprint per electricity generation can be reduced by 80 % by extending 40 years before disposal. Moreover, by employing four-group partitioning technology without transmutation, the footprint can be reduced by 90 % with cooling time of 150 years.

Journal Articles

The Development status of Generation IV reactor systems, 2; High temperature gas-cooled reactor (HTGR)

Kunitomi, Kazuhiko; Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 60(4), p.236 - 240, 2018/04

High temperature gas-cooled reactor (HTGR) is a graphite-moderated and helium-gas-cooled thermal-neutron reactor that has excellent safety features and can produce high temperature heat of 950$$^{circ}$$C. It is expected to use for various heat applications as well as for electricity generation to reduce carbon dioxide emission. Japan Atomic Energy Agency (JAEA) has been promoted research and development to demonstrate the HTGR safety features using High temperature engineering test reactor (HTTR) and it's heat application. JAEA are also conducting the action to international deployment of Japanese HTGR technologies in cooperation with industries-government-academia. This paper reports status of the research and development of HTGR and domestic and international collaborations.

Journal Articles

Burn-up characteristics and criticality effect of impurities in the graphite structure of a commercial-scale prismatic HTGR

Fukaya, Yuji; Goto, Minoru; Nishihara, Tetsuo

Nuclear Engineering and Design, 326, p.108 - 113, 2018/01

AA2015-0964.pdf:0.64MB

 Times Cited Count:3 Percentile:37.13(Nuclear Science & Technology)

Burn-up characteristics and criticality of impurity contained into graphite structure for commercial scale prismatic High Temperature Gas-cooled Reactor (HTGR) have been investigated. For HTGR, of which the core is filled graphite structure, the impurity contained into the graphite has unignorable poison effect for criticality. Then, GTHTR300, commercial scale HTGR, employed high grade graphite material named IG-110 to take into account the criticality effect for the reflector blocks next to fuel blocks. The fuel blocks, which should also employ IG-110, employ lower grade graphite material named IG-11 from the economic perspective. In this study, the necessity of high grade graphite material for commercial scale HTGR is reconsidered by evaluating the burn-up characteristics and criticality of the impurity. The poison effect of the impurity, which is used to be expressed by a boron equivalent, reduces exponentially like burn-up of $$^{10}$$B, and saturate at a level of 1 % of the initial value of boron equivalent. On the other hand, the criticality effect of the boron equivalent of 0.03 ppm, which corresponds to a level of 1 % of IG-11 shows ignorable values lower than 0.01 %$$Delta$$k/kk' for both of fuel blocks and reflector blocks. The impurity can be represented by natural boron without problem. Therefore, the poison effect of the impurity is evaluated with whole core burn-up calculations. As a result, it is concluded that the impurity is not problematic from the viewpoint of criticality for commercial scale HTGR because it is burned clearly until End of Cycle (EOC) even with the low grade graphite material of IG-11. According to this result, more economic electricity generation with HTGR is expected by abolishing the utilization of IG-110.

JAEA Reports

Assessment report on research and development activities in FY2016; Activity "Research and development on high temperature gas-cooled reactor and related heat application technology" (Interim report)

Tatematsu, Kenji; Nishihara, Tetsuo

JAEA-Evaluation 2017-001, 107 Pages, 2017/09

JAEA-Evaluation-2017-001.pdf:13.46MB

President of Japan Atomic Energy Agency consulted with the "Evaluation Committee of Research Activities for High Temperature Gas-cooled Reactor and Related Hydrogen Production Technology" (hereinafter referred to as "Evaluation Committee"), which consists of specialists in the fields of the evaluation subjects of high temperature gas-cooled reactor and related heat application technology, about the relevance of the management and research activities of the HTGR Hydrogen and Heat Application Research Center during the period from April 2015 to March 2017. The assessment of the Evaluation Committee concluded with a score of B for the confirmation of adjustability to the new regulation standard for restarting HTTR and for the development of hydrogen production technology, a score of A for the design of HTTR-GT/H$$_{2}$$ test plant completing all equipment design specification and for the development exceeding the original scope of an oxidation resistant fuel element containing SiC. The Evaluation Committee concluded with a score of A for the overall activity. In addition, the Evaluation Committee recommended that the judgement to move to the construction phase of the HTTR-GT/H$$_{2}$$ test plant be made after 3-4 years, after the HTTR will be restarted and the thermal load fluctuation tests using HTTR will be carried out. This report lists the members of the Evaluation Committee and outlines the method and procedure of the assessment. The assessment report by the Evaluation Committee is attached.

Journal Articles

Development of fuel temperature calculation code for HTGRs

Inaba, Yoshitomo; Nishihara, Tetsuo

Annals of Nuclear Energy, 101, p.383 - 389, 2017/03

 Times Cited Count:6 Percentile:58.02(Nuclear Science & Technology)

In order to ensure the thermal integrity of fuel in High Temperature Gas-cooled Reactors (HTGRs), it is necessary that the maximum fuel temperature in normal operation is to be lower than a thermal design target. In the core thermal-hydraulic design of block-type HTGRs, the maximum fuel temperature should be evaluated considering data such as thermal power, core geometry, power density and neutron fluence distributions, and core coolant flow distribution. The fuel temperature calculation code used in the design stage of the High Temperature engineering Test Reactor (HTTR) presupposes to run on UNIX systems, and its operation and execution procedure are complicated and are not user-friendly. Therefore, a new fuel temperature calculation code named FTCC which has a user-friendly system such as a simple and easy operation and execution procedure, was developed. This paper describes calculation objects and models, basic equations, improvement points from the HTTR design code in FTCC, and the result of a validation calculation with FTCC. The calculation result obtained by FTCC provides good agreement with that of the HTTR design code, and then FTCC will be used as one of the design codes for HTGRs. In addition, the effect of cooling forms on the maximum fuel temperature is investigated by using FTCC. As a result, it was found that the effect of center hole cooling for hollow fuel compacts and gapless cooling with monolithic type fuel rods on reducing the temperature is very high.

Journal Articles

Development of safety requirements for HTGRs design

Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tokuhara, Kazumi; Nishihara, Tetsuo; Kunitomi, Kazuhiko

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.330 - 340, 2016/11

The safety requirements for the design of HTGRs has been developed by the research committee established in the Atomic Energy Society of Japan so as to incorporate the HTGR safety features demonstrated by HTTR, lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the coupling of the hydrogen production plants with nuclear plant. The safety design approach was determined to establish a high level of safety design standards by utilizing inherent safety features of HTGRs. This paper describes the process to develop the HTGR specific safety requirements and overview of the proposed HTGR specific safety requirements.

Journal Articles

Development of a core coolant flow distribution calculation code for HTGRs

Inaba, Yoshitomo; Honda, Yuki; Nishihara, Tetsuo

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.985 - 990, 2016/11

In order to ensure the thermal integrity of fuel in high temperature gas-cooled reactors (HTGRs), it is necessary that the maximum fuel temperature in the normal operation is to be lower than the thermal design target. In the core thermal-hydraulic design of block-type HTGRs, the maximum fuel temperature should be evaluated considering data such as thermal power, core geometry, power and neutron fluence distributions, and core coolant flow distribution. The core coolant flow distribution calculation code used in the design stage of High Temperature engineering Test Reactor (HTTR) presupposes to run on UNIX systems, and its operation and execution procedure are complicated and not user-friendly. Therefore, a new core coolant flow distribution calculation code with a user-friendly system such as simple and easy operations and execution procedures has been developed. In this paper, the outline of the new code is described and the simulation result of an out-of-pile test with one fuel column is shown as the first step of the code validation. The simulation results provide good agreement with the test one.

Journal Articles

Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR

Fukaya, Yuji; Nishihara, Tetsuo

Nuclear Engineering and Design, 307, p.188 - 196, 2016/10

AA2015-0894.pdf:0.58MB

 Times Cited Count:4 Percentile:32.18(Nuclear Science & Technology)

Reduction of High Level Waste (HLW) and footprint in a geological repository due to high burn-up and high thermal efficiency of High Temperature Gas-cooled Reactor (HTGR) has been investigated. A helium-cooled and graphite-moderated commercial HTGR was designed as a Gas Turbine High Temperature Reactor (GTHTR300), and the features are significantly high burn-up of approximately 120 GWd/t, high thermal efficiency around 50%, and pin-in-block type fuel. The pin-in-block type fuel was employed to reduce processed graphite volume in reprocessing, and effective waste loading method for direct disposal is proposed by applying the feature in this study. As a result, it is found that the number of canisters and its repository footprint per electricity generation can be reduced by 60% compared with LWR representative case for direct disposal because of the higher burn-up, higher thermal efficiency, less TRU generation, and effective waste loading proposed in this study for HTGR. For disposal with reprocessing, the number of canisters and its repository footprint per electricity generation can be reduced by 30% compared with LWR because of the 30% higher thermal efficiency of HTGR.

JAEA Reports

Study on stability criterion of xenon oscillation based on analysis solution for HTGR design

Fukaya, Yuji; Tokuhara, Kazumi; Nishihara, Tetsuo

JAEA-Research 2016-008, 52 Pages, 2016/06

JAEA-Research-2016-008.pdf:2.18MB

To investigate the xenon stability quantitatively, a study on stability criterion of xenon oscillation based on an analysis solution for HTGR design had been performed. Randall developed the stability criterion method of xenon oscillation based on an analysis solution. And, that have been employed for a LWR design. On the other hand, HTGR is also planted to design new type of reactors, such as Pu fueled reactor, and it is necessary to confirm the xenon stability of those new types of reactors. Then, we developed the criterion method based on the Randall's method termed D-XESC/A, and high xenon stability of HTGR and feasibility for Pu fueled reactor is confirmed by comparing with xenon stability of other types of reactors.

153 (Records 1-20 displayed on this page)