検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 8 件中 1件目~8件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Measurement of 100- and 290-MeV/A carbon incident neutron production cross sections for carbon, nitrogen and oxygen

執行 信寛*; 魚住 祐介*; 上原 春彦*; 西澤 知也*; 水野 貴文*; 高宮 大義*; 橋口 太郎*; 佐藤 大樹; 佐波 俊哉*; 古場 裕介*; et al.

Nuclear Data Sheets, 119, p.303 - 306, 2014/05

 パーセンタイル:100(Physics, Nuclear)

重粒子線がん治療は、他の放射線治療に比べて正常部位への影響が小さいなどの利点により、近年注目を集めている。この治療では、患者の体内に入射した重イオンによる核反応で、中性子, $$gamma$$線等の二次放射線が生成される。治療施設の放射線安全設計のためには、二次放射線の生成量や角度分布を把握することが重要である。そこで、放射性医学総合研究所HIMAC加速器で、重粒子線がん治療に利用される290MeV/Aと体内での減速を想定した100MeV/Aの炭素ビームを用い、生体を構成する炭素,窒素及び酸素からの中性子生成断面積の実験データを15度から90度の角度領域で取得した。炭素ビームを入射するターゲットは、固体の炭素、アルミニウム化合物(窒化アルミニウム,酸化アルミニウム)及びアルミニウムで構成した。窒素及び酸素の断面積データは、アルミニウム化合物に対するデータから、アルミニウム単体によるデータを差し引き導出した。検出効率をSCINFUL-QMDコードで値づけた液体有機シンチレータ(NE213)を用いて中性子を検出し、運動エネルギーは飛行時間法(TOF)で求めた。取得した実験データと粒子・重イオン輸送計算コードPHITSの計算値との比較から、PHITSの核反応模型の精度を検証し、PHITSの重粒子線がん治療施設における放射線安全設計への応用についても議論する。

論文

Measurement of neutron yields from a water phantom bombarded by 290 MeV/u carbon ions

執行 信寛*; 魚住 祐介*; 上原 春彦*; 西澤 知也*; 平林 慶一*; 佐藤 大樹; 佐波 俊哉*; 古場 裕介*; 高田 真志*; 松藤 成弘*

Progress in Nuclear Science and Technology (Internet), 4, p.709 - 712, 2014/04

重粒子線治療では、患者体内に入射した重イオンビームによる核反応により、中性子をはじめとする2次放射線が生成される。重粒子線施設における治療室の遮へい設計のためには、患者を線源とした2次中性子の放出エネルギー及び角度分布を精度よく知る必要がある。これまでに測定された実験データは、独国GSIグループによる前方角度領域におけるもののみである。そこでわれわれは、放射線医学総合研究所HIMACにおいて、患者を模擬した水ファントムに治療に用いる290MeV/uの炭素ビームを入射し、15度から90度の広い角度領域で中性子生成量を測定した。水ファントムは厚さ20cmであり、入射炭素イオンはファントム内で完全に停止する。中性子検出器には、液体有機シンチレータNE213を採用し、その検出効率はSCINFUL-QMDコードを用いて求めた。中性子エネルギーは、飛行時間(TOF)法にて決定した。床散乱の寄与を評価するため、水ファントムとシンチレータの間に鉄製のシャドウバーを挿入した測定も行った。データ解析において、荷電粒子及び$$gamma$$線によるイベントを除去することにより、広い放出エネルギー、放出角度における中性子エネルギースペクトルの導出に成功した。また、取得した実験データとPHITSコードによる計算結果との比較を通して、PHITSコードの重粒子線治療施設の遮へい設計への応用についても議論した。

論文

Measurement of 100 MeV/u carbon incident neutron production cross sections on a carbon target

執行 信寛*; 魚住 祐介*; 上原 春彦*; 西澤 知也*; 水野 貴文*; 佐藤 大樹; 佐波 俊哉*; 古場 裕介*; 高田 真志*; 松藤 成弘*

JAEA-Conf 2013-002, p.137 - 142, 2013/10

重粒子線がん治療では、患者の体内に入射した重イオンによる核反応で中性子や$$gamma$$線等の二次放射線が発生する。これら二次放射線による患部外臓器への線量付与とそれに伴う二次発がんリスクを評価するためには、核反応で生成する放射線の生成断面積データが不可欠となる。平成23年度までに、治療に用いる290MeV/u炭素イオンと生体構成元素である炭素,窒素及び酸素との核反応による中性子生成断面積データを、広い生成エネルギーと角度領域において取得し、粒子・重イオン輸送コードシステムPHITSの核反応模型の精度検証を行った。平成24年度は、人体内で減速した炭素イオンが起こす核反応を調べるため、100MeV/u炭素イオンを炭素ターゲットに入射した際の断面積を測定した。実験は、放射線医学総合研究所HIMAC加速器にて実施した。6台のNE213液体有機シンチレータを、ビーム軸から15$$^{circ}$$, 30$$^{circ}$$, 45$$^{circ}$$, 60$$^{circ}$$, 75$$^{circ}$$及び90$$^{circ}$$方向に配置し、広い角度領域での測定を可能にした。中性子の運動エネルギーは飛行時間法によって決定し、入射エネルギーから約1MeVまでのエネルギー領域におけるデータ取得に成功した。NE213シンチレータの中性子検出効率は、機構が開発したSCINFUL-QMDコードにより求めている。取得した実験データはPHITSの計算値と比較し、核反応模型では再現の難しい低ネルギー重イオン入射反応の精度を検証した。

論文

生体元素からの中性子および$$gamma$$線生成断面積の測定

魚住 祐介*; 執行 信寛*; 上原 春彦*; 西沢 知也*; 水野 貴文*; 佐藤 大樹; 佐波 俊哉*; 古場 裕介*; 高田 真志*; 松藤 成弘*; et al.

HIMAC-140, p.234 - 235, 2013/08

平成24年度に放射線医学総合研究所のHIMAC加速器を用いて行った研究の成果について報告する。重粒子線がん治療では、入射重イオンと生体構成元素との核反応から中性子及び$$gamma$$線が、患者体内で生成される。これら放射線による二次発がんリスクの推定には、重イオン核反応における生成断面積データが不可欠である。前年度までの研究により、広いエネルギー領域での断面積測定手法を確立し、治療に供される290MeV/u炭素イオンに対する炭素、窒素及び酸素原子核からの中性子生成断面積データを整備した。平成24年度は、患者体内にて減速した重イオンによる中性子及び$$gamma$$線の生成を調べるため、100MeV/u炭素イオンを炭素及び窒素ターゲットに入射する実験を行った。その結果、15$$^{circ}$$から90$$^{circ}$$までの6角度において、下限エネルギー0.6MeVまでの精度の良い断面積測定に成功した。今後は、本エネルギー領域における実験データの拡充とともに、粒子・重イオン輸送コードシステムPHITSとの比較から、二体衝突近似が成立する下限エネルギーでの理論模型の妥当性について考察する。

論文

Measurements of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

魚住 祐介*; 執行 信寛*; 梶本 剛*; 平林 慶一*; 上原 春彦*; 西澤 知也*; 佐藤 大樹; 佐波 俊哉*; 古場 裕介*; 高田 真志*; et al.

HIMAC-138, p.237 - 238, 2012/08

本発表では、平成23年度に放射線医学総合研究所のHIMAC加速器を用いて行った研究の成果について報告する。重粒子線がん治療では、入射重イオンと生体組織を構成する元素との核反応から中性子及び$$gamma$$線が患者体内で生成される。これらの放射線による二次発がんリスクの評価には、重イオン核反応における生成断面積のデータが不可欠である。平成22年度までの研究では、炭素+炭素及び酸素+炭素反応における中性子生成二重微分断面積を測定し、そのデータを公表した。平成23年度は290MeV/u炭素ビームを窒素化合物ターゲットに入射し、炭素+窒素反応における二重微分断面積を測定した。その結果、下限エネルギー0.6MeVまでの中性子断面積データを精度よく導出することに成功した。この成果をもって、所期の技術目標であった低エネルギー領域までの高精度中性子測定手法の確立は達せられた。今後は、確立した手法を用いて、生体構成元素に対する系統的な断面積データを整備する。また、前年度までのデータから$$gamma$$線生成二重微分断面積の導出を行った。得られた実験データは、粒子・重イオン輸送コードシステムPHITSの計算結果と比較され、$$gamma$$線生成模型の検証・改良に応用される。

口頭

水ファントムに対する290MeV/u炭素ビーム入射中性子収量の測定

執行 信寛*; 魚住 祐介*; 上原 春彦*; 西澤 知也*; 平林 慶一*; 佐藤 大樹; 佐波 俊哉*; 古場 裕介*; 高田 真志*; 松藤 成弘*

no journal, , 

粒子線がん治療において照射時に患者体内で生成される中性子や$$gamma$$線などの二次放射線の放出エネルギーや角度分布を把握することは、施設の安全設計とそれによる運転員や公衆の放射線防護にとって重要である。本研究では、重粒子線がん治療に利用される290MeV/u炭素ビームを人体を模擬した水ファントムに入射し、生成される中性子の二重微分収量を測定した。実験は、放射線医学総合研究所HIMAC施設にて行った。ファントムは、奥行き20cm,高さ32cm,厚さ1cmのアクリル容器からなり、内部を純水で満たした。中性子検出器には、直径と長さがともに12.7cm及び5.08cmである2種類の液体有機シンチレータを採用した。中性子エネルギーは飛行時間法に基づき導出した。測定角度は15$${^circ}$$から90$${^circ}$$までの6点である。実験値と粒子・重イオン輸送コードシステムPHITSの計算値との比較において、PHITSは実験値をおおむね再現した。しかし、高エネルギー側で実験値を過小評価、低エネルギー側で過大評価することが明らかになった。

口頭

タングステンに対する10MeV重陽子入射中性子二重微分収量の測定

執行 信寛*; 西澤 知也*; 石橋 健二*; 岩元 洋介; 松田 規宏; 坂本 幸夫*; 萩原 雅之*

no journal, , 

高強度中性子源として、10MeV程度の重陽子ビームを用いた加速器施設が挙げられるが、ビームダンプとして有用なタングステンから生成する中性子のエネルギー・角度二重微分収率(TTNY)に関する測定例はなかった。そこで、本研究では、タングステンと10MeV重陽子入射との反応によるTTNY測定を行い、計算コードPHITS及びTALYSによる結果との比較を行った。実験はTIARAの第1重イオン室で行った。0.15mm厚さのタングステンを真空チェンバー内に設置し、検出器として直径、厚さが5.08cmのNE213液体有機シンチレータを使用した。発生する中性子の測定角度は、重陽子の入射方向に対して、0$$^{circ}$$, 15$$^{circ}$$, 30$$^{circ}$$, 60$$^{circ}$$の4方向とし、ターゲットと検出器間の距離を2mとした。また、飛行時間法により中性子エネルギーを導出した。PHITS及びTALYSの計算は、広い中性子エネルギーにわたって実験による中性子収量を過大評価することがわかった。また、PHITSによる計算値は、物理モデルQMDにおいてQ値の取り扱いに問題があるために、中性子の最大エネルギーを過大評価することがわかった。

口頭

核子あたり13MeVの$$^{20}$$Ne入射によるベリリウム及び鉄の中性子及び荷電粒子生成断面積測定

岩元 洋介; 松田 規宏; 坂本 幸夫*; 萩原 雅之*; 佐波 俊哉*; 執行 信寛*; 西澤 知也*

no journal, , 

低エネルギー(核子あたり15MeV以下)重イオンビームを用いた加速器施設において、ターゲットや加速器構造材から生成する中性子及び荷電粒子の二重微分断面積(DDX)に関する測定例はなかった。そこで、本研究では、ベリリウム及び鉄と核子あたり13MeVの$$^{20}$$Neビームとの反応により生成する中性子及び荷電粒子(陽子,重陽子,トリチウム,ベリリウム等)のDDX測定をTIARAの第1重イオン室で行い、計算コードPHITSによる計算値との比較を行った。15$$mu$$m厚さのベリリウムと1$$mu$$m厚さの鉄ターゲット、及び荷電粒子測定のための異なる2つの厚さを持つSSD検出器($$Delta$$E-Eカウンタ)を真空チェンバー内に設置した。中性子検出器として直径,厚さが約5.1cmのNE213液体有機シンチレータを使用し、ターゲット中心から2mの位置に設置した。中性子に関して、PHITSの計算は実験値を約3倍過大評価することがわかった。一方、トリチウム生成に関しては、$$^{20}$$Ne入射方向に対して30$$^{circ}$$及び60$$^{circ}$$において実験値をよく再現した。今後、多くの荷電粒子生成断面積を解析により取得し、低エネルギー核反応モデルの記述を包括的に検証する。

8 件中 1件目~8件目を表示
  • 1