Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Numata, Naoto*; Asakawa, Tomoyuki*; Sakai, Hiroshi*; Umemori, Kensei*; Furuya, Takaaki*; Shinoe, Kenji*; Enami, Kazuhiro*; Egi, Masato*; Sakanaka, Shogo*; Michizono, Shinichiro*; et al.
Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.566 - 570, 2015/09
no abstracts in English
Matsui, Yoshinori; Takahashi, Hiroyuki; Yamamoto, Masaya; Nakata, Masahito; Yoshitake, Tsunemitsu; Abe, Kazuyuki; Yoshikawa, Katsunori; Iwamatsu, Shigemi; Ishikawa, Kazuyoshi; Kikuchi, Taiji; et al.
JAEA-Technology 2009-072, 144 Pages, 2010/03
"R&D Project on Irradiation Damage Management Technology for Structural Materials of Long-life Nuclear Plant" was carried out from FY2006 in a fund of a trust enterprise of the Ministry of Education, Culture, Sports, Science and Technology. The coupled irradiations or single irradiation by JOYO fast reactor and JRR-3 thermal reactor were performed for about two years. The irradiation specimens are very important materials to establish of "Evaluation of Irradiation Damage Indicator" in this research. For the acquisition of the examination specimens irradiated by the JOYO and JRR-3, we summarized about the overall plan, the work process and the results for the study to utilize these reactors and some facilities of hot laboratory (WASTEF, JMTR-HL, MMF and FMF) of the Oarai Research-and-Development Center and the Nuclear Science Research Institute in the Japan Atomic Energy Agency.
Sakuraba, Naotoshi; Numata, Masami; Komiya, Tomokazu; Ichise, Kenichi; Nishi, Masahiro; Tomita, Takeshi; Usami, Koji; Endo, Shinya; Miyata, Seiichi; Kurosawa, Tatsuya; et al.
JAEA-Technology 2009-071, 34 Pages, 2010/03
As a part of maintenance technology of a large-sized glove box for handling of TRU nuclides, we developed replacement technology for front acrylic panels using the bag-in/bag-out method and applied this technology to replace the deteriorated front acrylic panels at Waste Safety Testing Facility (WASTEF) in Nuclear Science Research Institute of Japan Atomic Energy Agency (JAEA). As a consequence, we could safely replace the front acrylic panels under the condition of continuous negative pressure only with partial decontamination of the glove box. We also demonstrated that the present technology is highly effective in points of safety, workability and cost as compared to the usual replacement technology for front acrylic panels of a glove box, where workers in an air-line suit replace directly the front acrylic panels in a green house.
Endo, Shinya; Numata, Masami; Ichise, Kenichi; Nishi, Masahiro; Komiya, Tomokazu; Sakuraba, Naotoshi; Usami, Koji; Tomita, Takeshi
Proceedings of 46th Annual Meeting of "Hot Laboratories and Remote Handling" Working Group (HOTLAB 2009) (CD-ROM), 6 Pages, 2009/09
For safety operation and maintenance of the large size glove box, the degraded acrylic panels of the box must be replaced by the new panels. As the conventional replacement technique, the decontamination of the glove box and installation of isolation tent are necessary to prevent the leak of contamination, because airtight condition of the box is broken down during replacement process. Therefore, the prerequisite works are required considerable manpower. The new replacement technique using bag-in / bag-out method was developed by JAEA. In this technique, for keeping the airtight condition of the box, the inside of degraded panel is covered with an airtight panel and the outside is covered over the large bag which is used to replace the acrylic panels. As the benefits of this technique, the prerequisite works are not required and the manpower is less than a third of the conventional technique.
Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji*; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu
Proceedings of 2005 JAEA-KAERI Joint Seminar on Advanced Irradiation and PIE Technologies, p.S2_7_1 - S2_7_11, 2005/11
no abstracts in English
; Nemoto, Takeshi; Numata, Koji; ; *; *; Hanawa, Eiji*
PNC TN8440 95-019, 22 Pages, 1995/04
None
; Nemoto, Takeshi; Numata, Koji; *; *; Hanawa, Eiji*; *
PNC TN8440 94-011, 19 Pages, 1994/04
None
Numata, Koji; ; Nemoto, Takeshi; ; *; *; Hanawa, Eiji*
PNC TN8410 93-101, 40 Pages, 1993/04
None
Numata, Koji; ; Nemoto, Takeshi; ; *; *; Hanawa, Eiji*
PNC TN8410 93-100, 46 Pages, 1993/04
None
Matsui, Yoshinori; Nabeya, Hideaki; Kusunoki, Tsuyoshi; Takahashi, Hiroyuki; Aizawa, Masao; Nakata, Masahito; Numata, Masami; Usami, Koji; Endo, Shinya; Ito, Kazuhiro; et al.
no journal, ,
We are proceeding with the study of "R&D Project on Irradiation Damage Management Technology for Structural Materials of Long-life Nuclear Plant". For the study, it is important that the irradiated specimens are gotten by the coupling of JRR-3 and JOYO. This reports the total irradiation plan in the study, and the executed work for the coupling irradiation (JRR-3 and JOYO) including the Hot facilities work of Tokai and Oarai in the 2006 fiscal year.
Numata, Masami; Komiya, Tomokazu; Sakuraba, Naotoshi; Usami, Koji; Kitagawa, Isamu; Tomita, Takeshi*
no journal, ,
no abstracts in English
Usami, Koji; Ichise, Kenichi; Numata, Masami; Endo, Shinya; Onozawa, Atsushi; Takahashi, Hiroyuki; Kikuchi, Taiji; Ishikawa, Kazuyoshi; Yoshikawa, Katsunori; Nakata, Masahito; et al.
no journal, ,
In the R&D Project on Irradiation Damage Management Technology for Structural Materials of Long-life Nuclear Plant, the specimens to be obtained by coupling irradiation between JOYO and JRR-3 is necessary to establish the evaluation method by using the irradiation damage indicator of them. Therefore, the techniques for assembling of JRR-3 re-irradiation capsule in the Waste Safety Testing Facility (WASTEF) were developed to perform the coupling irradiation. The techniques contributed to the first coupling irradiation in the world.
Numata, Taro*; Fujisawa, Yasuo*; Kobayashi, Yuichi*; Sugita, Yutaka; Kageyama, Takeshi; Hane, Koji*; Sahara, Fumihiro*; Yabuki, Nobuyoshi*; Makanae, Koji*
no journal, ,
This paper reports development of ISRE (the Integrated System for Repository Engineering), as a knowledge management tool on the repository design and engineering technology, which manages and inherits the information and knowledge of each phase of the disposal project of the radioactive waste during around 100 years, which also enables reasonable design of the repository by using accumulated and integrated information. Content of this paper is expansion of function for practical use of the iSRE.
Hane, Koji*; Sahara, Fumihiro*; Sugita, Yutaka; Kageyama, Takeshi; Fujisawa, Yasuo*; Numata, Taro*; Kobayashi, Yuichi*; Yabuki, Nobuyoshi*; Makanae, Koji*
no journal, ,
This paper reports development of ISRE (the Integrated System for Repository Engineering), as a knowledge management tool on the repository design and engineering technology, which manages and inherits the information and knowledge of each phase of the disposal project of the radioactive waste during around 100 years, which also enables reasonable design of the repository by using accumulated and integrated information. Content of this paper is outline of trial utilization of prototype of the iSRE and the extracted issues for practical system.