Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Operation status of the superconducting cavity for CERL main linac; Toward the deep understanding inside the superconducting cavity with high current beam

Numata, Naoto*; Asakawa, Tomoyuki*; Sakai, Hiroshi*; Umemori, Kensei*; Furuya, Takaaki*; Shinoe, Kenji*; Enami, Kazuhiro*; Egi, Masato*; Sakanaka, Shogo*; Michizono, Shinichiro*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.566 - 570, 2015/09

no abstracts in English

JAEA Reports

Replacement technology for front acrylic panels of a large-sized glove box using bag-in / bag-out method

Sakuraba, Naotoshi; Numata, Masami; Komiya, Tomokazu; Ichise, Kenichi; Nishi, Masahiro; Tomita, Takeshi; Usami, Koji; Endo, Shinya; Miyata, Seiichi; Kurosawa, Tatsuya; et al.

JAEA-Technology 2009-071, 34 Pages, 2010/03

JAEA-Technology-2009-071.pdf:21.07MB

As a part of maintenance technology of a large-sized glove box for handling of TRU nuclides, we developed replacement technology for front acrylic panels using the bag-in/bag-out method and applied this technology to replace the deteriorated front acrylic panels at Waste Safety Testing Facility (WASTEF) in Nuclear Science Research Institute of Japan Atomic Energy Agency (JAEA). As a consequence, we could safely replace the front acrylic panels under the condition of continuous negative pressure only with partial decontamination of the glove box. We also demonstrated that the present technology is highly effective in points of safety, workability and cost as compared to the usual replacement technology for front acrylic panels of a glove box, where workers in an air-line suit replace directly the front acrylic panels in a green house.

Journal Articles

Replacement technique for front acrylic panels of a large size glove box using bag-in / bag-out method

Endo, Shinya; Numata, Masami; Ichise, Kenichi; Nishi, Masahiro; Komiya, Tomokazu; Sakuraba, Naotoshi; Usami, Koji; Tomita, Takeshi

Proceedings of 46th Annual Meeting of "Hot Laboratories and Remote Handling" Working Group (HOTLAB 2009) (CD-ROM), 6 Pages, 2009/09

For safety operation and maintenance of the large size glove box, the degraded acrylic panels of the box must be replaced by the new panels. As the conventional replacement technique, the decontamination of the glove box and installation of isolation tent are necessary to prevent the leak of contamination, because airtight condition of the box is broken down during replacement process. Therefore, the prerequisite works are required considerable manpower. The new replacement technique using bag-in / bag-out method was developed by JAEA. In this technique, for keeping the airtight condition of the box, the inside of degraded panel is covered with an airtight panel and the outside is covered over the large bag which is used to replace the acrylic panels. As the benefits of this technique, the prerequisite works are not required and the manpower is less than a third of the conventional technique.

Oral presentation

Replacement technology for front acrylic panels of a large glovebox using bag-out/bag-in method

Numata, Masami; Komiya, Tomokazu; Sakuraba, Naotoshi; Usami, Koji; Kitagawa, Isamu; Tomita, Takeshi*

no journal, , 

no abstracts in English

Oral presentation

Development of volume reduction equipment for radioactive waste

Ichise, Kenichi; Sakuraba, Naotoshi; Suzuki, Kazuhiro; Miyata, Seiichi; Komiya, Tomokazu; Nishi, Masahiro; Kitagawa, Isamu; Numata, Masami

no journal, , 

As a part of measures to reduce radioactive wastes, which are generated during operation and maintenance of Waste Safety Testing Facility (WASTEF), we developed volume reduction equipment for $$beta$$$$gamma$$ and $$alpha$$ wastes. In this presentation, we report manufacture of an experimental model, its operativeness & verification of reduction effect in a mock-up test, improvements, and application to actual radioactive wastes.

5 (Records 1-5 displayed on this page)
  • 1