Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:7 Percentile:80.72(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki
EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07
The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.6310 variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.0810. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.
Saha, P. K.; Yoshimoto, Masahiro; Hotchi, Hideaki; Harada, Hiroyuki; Okabe, Kota; Yamazaki, Yoshio; Kinsho, Michikazu; Irie, Yoshiro*
Journal of Radioanalytical and Nuclear Chemistry, 305(3), p.851 - 857, 2015/09
Times Cited Count:2 Percentile:16.55(Chemistry, Analytical)Saha, P. K.; Yoshimoto, Masahiro; Yamazaki, Yoshio; Hotchi, Hideaki; Harada, Hiroyuki; Okabe, Kota; Kinsho, Michikazu; Irie, Yoshiro*
Nuclear Instruments and Methods in Physics Research A, 776, p.87 - 93, 2015/03
Times Cited Count:7 Percentile:48.80(Instruments & Instrumentation)Tobita, Norimitsu; Yoshimoto, Masahiro; Yamazaki, Yoshio; Saeki, Riuji; Okabe, Kota; Kinsho, Michikazu; Takeda, Osamu*; Muto, Masayoshi*
Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.915 - 919, 2014/06
The charge conversion foil used with a J-PARC 3GeV synchrotron (RCS: Rapid Cycling Synchrotron) is a thin film made from carbon about 1 micrometer thick, and it radioactivates it by continuing being irradiated with a beam. Moreover, generally it is thought that degradation progresses and foil itself breaks easily. However, when dealing with the foil after irradiation, the measure against the danger of the contamination and the contamination in the living body by foil dispersing is one of the subjects. So, in RCS, the foil exchange booth for collecting the radioactivated foil safely and certainly was installed. Even when dispersing foil temporarily, the radioactivated foil can be shut up only in Booth and a worker's contamination and contamination of work area could be prevented. Moreover, when it sees from a viewpoint of the performance gain of foil, analysis and observation of the collected foil are one of the important issues. Then, in order to observe the radioactivated foil after beam irradiation, the transparent protective case which can be sealed with a foil frame simple substance was developed. In this announcement, the equipment developed in order to collect the charge conversion foil after beam irradiation, and the established technique are announced in detail.
Saeki, Riuji; Yoshimoto, Masahiro; Yamazaki, Yoshio; Tobita, Norimitsu; Okabe, Kota; Kinsho, Michikazu; Takeda, Osamu*; Muto, Masayoshi*
Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.523 - 526, 2014/06
RCS has loaded with the foil of 15 sheets including a reserve into equipment so that it can exchange in a short time, when foil is damaged also in a beam operating period. It is difficult for foil to be made of a thin film about 1 micrometer thick, and to treat as it is. Then, foil is fixed to the frame which stuck the SiC fiber, and foil is not touched, but only a frame is held, and it enabled it to operate it. The following preparations are needed as new foil exchange work. (1) Exfoliation and recovery of foil which have been vapor-deposited to glass substrate. (2) Dryness and logging of exfoliative foil. (3) Preparation of SiC wire, and attachment on frame. (4) Fix foil to a frame. (5) Although charge on a magazine-rack was performed manually altogether until now, there were many work man days, and the quality of the prepared foil had variation. Then, equipment required in order to secure reproducibility was developed. The technique for working efficiently simultaneously was established. In this announcement, the technique established until now and the developed jigs are announced in detail.
Saha, P. K.; Harada, Hiroyuki; Hatakeyama, Shuichiro; Hayashi, Naoki; Hotchi, Hideaki; Kinsho, Michikazu; Okabe, Kota; Saeki, Riuji; Yamamoto, Kazami; Yamazaki, Yoshio; et al.
Proceedings of 2nd International Beam Instrumentation Conference (IBIC 2013) (Internet), p.239 - 242, 2013/12
Iguchi, Tadashi; ; Okabe, Kazuharu*; Sugimoto, Jun; ; Okubo, Tsutomu; Murao, Yoshio
JAERI-M 91-174, 98 Pages, 1991/10
no abstracts in English
; Okabe, Kazuharu*; Sobajima, Makoto; Abe, Yutaka; Iwamura, Takamichi; Onuki, Akira; Okubo, Tsutomu; ; Murao, Yoshio
JAERI-M 90-106, 101 Pages, 1990/07
no abstracts in English
Otosaka, Shigeyoshi*; Misono, Toshiharu; Dohi, Terumi; Tsuruta, Tadahiko; Takahashi, Yoshio*; Sugihara, Naoko*; Obata, Hajime*; Ikenoue, Takahito*; Jimi, Naoto*; Hookabe, Natsumi*
no journal, ,
no abstracts in English
Mogaki, Kazuhiko; Hanada, Masaya; Kawai, Mikito; Kazawa, Minoru; Akino, Noboru; Komata, Masao; Usui, Katsutomi; Oasa, Kazumi; Kikuchi, Katsumi; Shimizu, Tatsuo; et al.
no journal, ,
no abstracts in English