Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ono, Masato; Shimizu, Atsushi; Ohashi, Hirofumi; Hamamoto, Shimpei; Inoi, Hiroyuki; Tokuhara, Kazumi*; Nomoto, Yasunobu*; Shimazaki, Yosuke; Iigaki, Kazuhiko; Shinozaki, Masayuki
Nuclear Engineering and Design, 386, p.111585_1 - 111585_9, 2022/01
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In the late 1980s during the design stage, the seismic classification of the high temperature engineering test reactor (HTTR) was formulated. Owing to the lack of operation experiences of the HTTR to sufficiently understand the safety characteristics of high temperature gas cooled reactors (HTGR) at that time, the seismic classification of commercial light water reactors (LWR) was applied to HTTR. However, the subsequent operation experiences and test results using HTTR made it clear that the seismic classification of commercial LWR was somewhat too conservative for the HTGR. As a result, Class S facilities were downgraded compared to the commercial LWR. Moreover, the validity of the new seismic classification is confirmed. In June 2020, the Nuclear Regulatory Authority approved that the result of the seismic classification conformed to the standard rules of the reactor installation change.
Nakagawa, Shigeaki; Sato, Hiroyuki; Fukaya, Yuji; Tokuhara, Kazumi; Ohashi, Hirofumi
JAEA-Technology 2017-022, 32 Pages, 2017/09
As for the design of commercial HTGRs, the fuel design, core design, reactor coolant system design, secondary helium system design, decay heat removal system design and confinement system design are very important and quite different from those of LWRs. To contribute the establishment of the safety standards for commercial HTGRs, the evaluation items to attain safety requirements in fuel and core designs were studied. In this study, the excellence features of HTGRs based on passive safety or inherent safety were fully reflected. Additionally, concerning the core design, the stability to spatial power oscillation in reactor core of HTGR was studied. The evaluation items as the result of the study are applicable to the safety design of commercial HTGRs in the future.
Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tokuhara, Kazumi; Nishihara, Tetsuo; Kunitomi, Kazuhiko
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.330 - 340, 2016/11
The safety requirements for the design of HTGRs has been developed by the research committee established in the Atomic Energy Society of Japan so as to incorporate the HTGR safety features demonstrated by HTTR, lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the coupling of the hydrogen production plants with nuclear plant. The safety design approach was determined to establish a high level of safety design standards by utilizing inherent safety features of HTGRs. This paper describes the process to develop the HTGR specific safety requirements and overview of the proposed HTGR specific safety requirements.
Kondo, Masayoshi*; Koike, Yosuke*; Okuhara, Hiroyuki*; Oda, Masayuki*; Hase, Yoshihiro; Yoshihara, Ryohei; Kobayashi, Hitoshi*
JAEA-Review 2008-055, JAEA Takasaki Annual Report 2007, P. 67, 2008/11
no abstracts in English
Kondo, Masayoshi*; Koike, Yosuke*; Okuhara, Hiroyuki*; Kobayashi, Hitoshi*; Hoshi, Yosuke*; Nomizu, Toshikazu*; Yoshihara, Ryohei; Hase, Yoshihiro
no journal, ,
no abstracts in English