Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 59

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-3, JRR-4 and JRTF facilities

Tobita, Minoru*; Konda, Miki; Omori, Takeshi*; Nabatame, Tsutomu*; Onizawa, Takashi*; Kurosawa, Katsuaki*; Haraga, Tomoko; Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; et al.

JAEA-Data/Code 2022-007, 40 Pages, 2022/11

JAEA-Data-Code-2022-007.pdf:1.99MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete, ash, ceramic and brick samples generated from JRR-3, JRR4 and JRTF facilities. In this report, we summarized the radioactivity concentrations of 24 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{133}$$Ba, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2020-2021.

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JPDR Facility

Tobita, Minoru*; Haraga, Tomoko; Endo, Tsubasa*; Omori, Hiroyuki*; Mitsukai, Akina; Aono, Ryuji; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2021-013, 30 Pages, 2021/12

JAEA-Data-Code-2021-013.pdf:1.47MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JPDR facility. In this report, we summarized the radioactivity concentrations of 21 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2018-2019.

Journal Articles

Separation and recovery of long-lived fission products from high level radioactive waste using electrochemical technique

Kanamura, Shohei*; Takahashi, Yuya*; Omori, Takashi*; Nohira, Toshiyuki*; Sakamura, Yoshiharu*; Matsumura, Tatsuro

Denki Kagaku, 88(3), p.289 - 290, 2020/09

no abstracts in English

Journal Articles

Zr separation from high-level liquid waste with a novel hydroxyacetoamide type extractant

Morita, Keisuke; Suzuki, Hideya; Matsumura, Tatsuro; Takahashi, Yuya*; Omori, Takashi*; Kaneko, Masaaki*; Asano, Kazuhito*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.464 - 468, 2019/09

High level liquid waste (HLLW) contains several radionuclides with half-lives longer than 10$$^{6}$$ year. For reduce environmental burden of waste disposal, minor actinoids and long-lived fission products will to be partitioned and transmuted. JAEA and Toshiba developed process for recovering Se, Zr, Pd and Cs from HLLW. Solvent extraction for Zr with novel extractant, ${it N,N}$-didodecyl-2-hydroxyacetoamide (HAA) was detailed. The HAA system showed high selectivity for Zr, as indicated by the extraction order of Zr $$>$$ Mo $$>$$ Pd $$>$$ Ag $$approx$$ Sb $$>$$ Sn $$>$$ Lns $$>$$ Fe. The extracted species was determined as Zr(HAA)$$_{3}$$(NO$$_{3}$$)$$_{4}$$(HNO$$_{3}$$)$$_{x}$$. A continuous countercurrent extraction with HAA was applied to a simulated, concentrated HLLW after Pd, Se, and Cs removal, where the quantitative extraction of Zr and Mo was effectively demonstrated.

Journal Articles

Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation; Isolation techniques of Pd, Zr, Se and Cs in simulated high level radioactive waste using solvent extraction

Sasaki, Yuji; Morita, Keisuke; Ito, Keisuke; Suzuki, Shinichi; Shiwaku, Hideaki; Takahashi, Yuya*; Kaneko, Masaaki*; Omori, Takashi*; Asano, Kazuhito*

Proceedings of International Nuclear Fuel Cycle Conference (GLOBAL 2017) (USB Flash Drive), 4 Pages, 2017/09

no abstracts in English

Journal Articles

Collapse evaluation of double notched stainless pipes subjected to combined tension and bending

Suzuki, Ryosuke*; Matsubara, Masaaki*; Yanagihara, Seiji*; Morijiri, Mitsugu*; Omori, Atsushi*; Wakai, Takashi

Procedia Materials Science, 12, p.24 - 29, 2016/00

 Times Cited Count:2 Percentile:74.36(Engineering, Mechanical)

In this study, the plastic collapse strength of asymmetry multiple circumferential notched stainless steel pipes subjected to combined axial tension and bending is investigated experimentally and is compared with the theoretical plastic collapse strength. In addition, the potential is discussed for the simplification of structural integrity evaluation of multiple cracked piping. The integrity of the asymmetry multiple circumferential notched stainless steel pipes subjected to combined axial tension and bending can be evaluated conservatively using the theoretical plastic collapse strength for the pipe with multiple notches calculated based on the elastic-perfectly plastic model.

Journal Articles

Rare earth elements (REE) in deep groundwater from granite and fracture-filling calcite in the Tono area, central Japan; Prediction of REE fractionation in paleo- to present-day groundwater

Munemoto, Takashi; Omori, Kazuaki*; Iwatsuki, Teruki

Chemical Geology, 417, p.58 - 67, 2015/12

 Times Cited Count:32 Percentile:72.97(Geochemistry & Geophysics)

Rare earth elements (REEs) combined with yttrium (YREE) in deep groundwater from granite and fracture-filling calcite are being studied at the Mizunami Underground Research Laboratory (MIU, Tono area, central Japan).

Journal Articles

Hydrochemical disturbances measured in groundwater during the construction and operation of a large-scale underground facility in deep crystalline rock in Japan

Iwatsuki, Teruki; Hagiwara, Hiroki; Omori, Kazuaki; Munemoto, Takashi; Onoe, Hironori

Environmental Earth Sciences, 74(4), p.3041 - 3057, 2015/08

 Times Cited Count:18 Percentile:58.78(Environmental Sciences)

Changes of hydrochemical condition resulting from large-scale underground facility construction to 500 m depth in sedimentary and granitic rock were evaluated at the Mizunami Underground Research Laboratory (MIU), Japan. The investigation of hydrochemical impact around the facility suggests that an understanding of hydrogeological structures, including hydrogeological compartments prior to facility construction and the locating of shafts/galleries in low permeability rock area is essential to minimize hydrochemical disturbances.

JAEA Reports

Results of borehole investigation in -500m access/research gallery-north (13MI38$$sim$$13MI44 Boreholes)

Hasegawa, Takashi; Kawamoto, Koji; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Iwatsuki, Teruki; Sato, Toshinori

JAEA-Technology 2015-011, 135 Pages, 2015/07

JAEA-Technology-2015-011.pdf:28.63MB
JAEA-Technology-2015-011-appendix(CD-ROM).zip:566.32MB

The geological, hydraulic and geochemical data such as rock mass classification, groundwater inflow points and the volume, water pressure, and hydraulic conductivity were obtained from boreholes (13MI38$$sim$$13MI44) in the -500m Access/Research Gallery-North of Mizunami Underground Research laboratory (MIU). In addition to data acquisition, monitoring systems were installed to observe hydrochemical changes in the groundwater, and rock strain during and after the groundwater recovery experiment.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2013

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.

JAEA-Review 2014-038, 137 Pages, 2014/12

JAEA-Review-2014-038.pdf:162.61MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Hydrochemical investigation at the Mizunami Underground Research Laboratory; Compilation of groundwater chemistry data in the Mizunami group and the Toki granite (fiscal year 2013)

Omori, Kazuaki; Hasegawa, Takashi; Munemoto, Takashi; Masuda, Kaoru*; Aosai, Daisuke*; Inui, Michiharu*; Iwatsuki, Teruki

JAEA-Data/Code 2014-019, 121 Pages, 2014/12

JAEA-Data-Code-2014-019.pdf:56.12MB

Japan Atomic Energy Agency has been investigating the groundwater chemistry on excavating the underground facilities as part of the Mizunami Underground research Laboratory (MIU) Project at Mizunami City, Gifu Prefecture, Japan. In this report, we compiled data obtained by geochemical research for groundwater at the MIU in the fiscal year 2013.

JAEA Reports

Methodology development for colloid investigation in groundwater

Omori, Kazuaki; Munemoto, Takashi; Hasegawa, Takashi; Shingu, Shinya*; Hagiwara, Hiroki; Iwatsuki, Teruki

JAEA-Research 2014-013, 29 Pages, 2014/08

JAEA-Research-2014-013.pdf:48.04MB

We summarized investigation method of colloid in groundwater. We examined the ultrafiltration of groundwater by using in-situ water monitoring system and batch type airtight container. Additionally, we examined the cross flow filtration method replaced by ultrafiltration. The knowledge of investigating methods is obtained.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Hydrogeochemical research and development at Mizunami Underground Research Laboratory up to 500m depth

Iwatsuki, Teruki; Yuguchi, Takashi; Omori, Kazuaki; Hasegawa, Takashi; Munemoto, Takashi

JAEA-Research 2013-021, 63 Pages, 2013/12

JAEA-Research-2013-021.pdf:13.42MB

We evaluated the Phase I - hydrogeochemical model constructed by Surface-based investigation phase (Phase I), and observed hydrogeochemical change resulting from facility construction in Phase II research. Additionally we developed investigation technique on redox condition, colloid/organics, etc. at gallery in Phase III research. Hydrogeochemical changes in sedimentary rocks and granite resulting from facility construction have been caused by the change of mixing ratio among salinity-distinct groundwaters. Multivariate numerical analysis shows that the groundwater chemistry around drifts would change to that of shallow groundwater in the future. The know-hows on hydrochemical monitoring at the hydrogeological structures and numerical analysis were summarized to infer the hydrochemical changing processes during the facility construction.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Fabrication of U-Pu-Zr metallic fuel elements for the irradiation test at experimental fast test reactor Joyo

Nakamura, Kinya*; Ogata, Takanari*; Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Kato, Tetsuya*; Arai, Yasuo; Uozumi, Koichi*; Hijikata, Takatoshi*; Koyama, Tadafumi*; et al.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 10(4), p.245 - 256, 2011/12

Sodium-bonded metallic fuel elements were fabricated for the first time in Japan for the irradiation test in the experimental fast test reactor JOYO. U-20Pu-10Zr fuel slugs of 200 mm in length and approximately 5 mm in diameter were fabricated in a small-scale injection casting furnace. Each fuel slug was loaded into the ferritic martenstic stainless steel (PNC-FMS) cladding tube with the sodium thermal bond, thermal insulator and reflector in a helium gas atmosphere glove box. After top-end plug welding to the cladding tube and heat treatment of the welding area, each fuel element was subjected to the sodium bonding process. After the inspection such as element length, gas plenum length and helium-leak tightness, six metallic fuel elements are transported to the JOYO site for the coming irradiation test.

Journal Articles

Engineering and maintenance studies of the ITER diagnostic upper port plug

Sato, Kazuyoshi; Omori, Junji; Kondoh, Takashi; Hatae, Takaki; Kajita, Shin*; Ishikawa, Masao; Neyatani, Yuzuru; Ebisawa, Katsuyuki*; Kusama, Yoshinori

Fusion Engineering and Design, 84(7-11), p.1713 - 1715, 2009/06

 Times Cited Count:1 Percentile:10.22(Nuclear Science & Technology)

Engineering analyses have been performed for the representative diagnostic upper port plug of ITER. Maintenance and integration design have been also carried out for the diagnostic components to be installed in the upper port plug. From the electromagnetic and structural analyses, it has come up an important problem to suppress the displacement of the upper port plug rather than to reduce the produced stress. Reducing the EM force will help to decrease the severity of potential displacement. Maximum displacement of the port plug decreases with increasing in the number of slits in a manner that the displacement would seem to be less than the design tolerance. A proposed low body roller and inner frame may enhance maintenance and integration. These studies and designs have established the design basis for the diagnostic upper port plug.

Journal Articles

Design of neutron beamline for fundamental physics at J-PARC BL05

Mishima, Kenji*; Ino, Takashi*; Sakai, Kenji; Shinohara, Takenao; Hirota, Katsuya*; Ikeda, Kazuaki*; Sato, Hiromi*; Otake, Yoshie*; Omori, Hitoshi*; Muto, Suguru*; et al.

Nuclear Instruments and Methods in Physics Research A, 600, p.342 - 345, 2009/02

 Times Cited Count:27 Percentile:85.04(Instruments & Instrumentation)

A new beamline for a fundamental physics experiment is under construction at BL05 port in the Materials and Life Science Facility (MLF) at Japan Proton Accelerator Research Complex (J-PARC), this beamline is designed using novel techniques of neutron optics and it is termed "Neutron Optics and Physics". The beam from the moderator is deflected by multi-channel supermirrors and split into three branches for individual experiments. In this study, we have optimized the design of the beam optics and shields using the Monte Carlo simulation package PHITS. The neutron fluxes of beams are expected to be $$9.2 times 10^5/$$cm$$^2/mu$$str$$/$$s$$/$$MW, $$1.2 times 10^9/$$cm$$^2/$$s$$/$$MW, $$4.0 times 10^8/$$cm$$^2/$$s$$/$$MW, with polarization of 99.8%.

Journal Articles

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

Motojima, Osamu*; Yamada, Hiroshi*; Komori, Akio*; Oyabu, Nobuyoshi*; Muto, Takashi*; Kaneko, Osamu*; Kawahata, Kazuo*; Mito, Toshiyuki*; Ida, Katsumi*; Imagawa, Shinsaku*; et al.

Nuclear Fusion, 47(10), p.S668 - S676, 2007/10

 Times Cited Count:34 Percentile:73.71(Physics, Fluids & Plasmas)

The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5$$times$$10$$^{20}$$ m$$^{-3}$$, which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high-beta and long pulse.

Journal Articles

SlimCS; Compact low aspect ratio DEMO reactor with reduced-size central solenoid

Tobita, Kenji; Nishio, Satoshi; Sato, Masayasu; Sakurai, Shinji; Hayashi, Takao; Shibama, Yusuke; Isono, Takaaki; Enoeda, Mikio; Nakamura, Hirofumi; Sato, Satoshi; et al.

Nuclear Fusion, 47(8), p.892 - 899, 2007/08

 Times Cited Count:57 Percentile:86.6(Physics, Fluids & Plasmas)

The concept for a compact DEMO reactor named "SlimCS" is presented. Distinctive features of the concept is low aspect ratio ($$A$$ = 2.6) and use of a reduced-size center solenoid (CS) which has a function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field (TF) coil system which contributes to reducing the weight and construction cost of the reactor. SlimCS is as compact as advanced commercial reactor designs such as ARIES-RS and produces 1 GWe in spite of moderate requirements for plasma parameters. Merits of low-$$A$$, i.e. vertical stability for high elongation and high beta limit are responsible for such reasonable physics requirements.

59 (Records 1-20 displayed on this page)