Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
野村 昌弘; 沖田 英史; 島田 太平; 田村 文彦; 山本 昌亘; 古澤 将司*; 杉山 泰之*; 長谷川 豪志*; 原 圭吾*; 大森 千広*; et al.
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.80 - 82, 2021/10
J-PARC 3GeVシンクロトロンでは画像認識技術を用いることにより、ビームモニタで得たビーム進行方向の強度分布の画像から中心運動量からのずれ量が得られるようになった。今後、この得られた値を加速器の制御に使用することを考えた場合には、得られた値が信頼できるかが重要となってくる。なぜなら、画像認識技術では、データ取得に失敗した画像からも何らかの間違った値が得られてしまうからである。得られた値が信頼できるかどうかは当然その画像で決まる。そこで、今回機械学習の一種であるオートエンコーダーによる異常診断の手法を画像の診断に適用することにより、画像から得られた値が信頼できるかを示す指標を得ることができた。
田村 文彦; 杉山 泰之*; 吉井 正人*; 山本 昌亘; 沖田 英史; 大森 千広*; 野村 昌弘; 島田 太平; 長谷川 豪志*; 原 圭吾*; et al.
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.170 - 174, 2021/10
J-PARC 3GeVシンクロトロン(RCS)における大強度陽子ビームの安定な加速のためには高精度で安定な低電力高周波(LLRF)制御システムが不可欠である。RCSのLLRF制御システムは運転開始から10年以上大きな問題なく運転されてきたが、構成要素であるデジタル部品の陳腐化により維持することが困難となっていた。このため、2016年より次世代LLRF制御システムの開発を行い、2019年に次世代システムへの置き換えを完了した。RCSの広帯域金属磁性体空胴のビームローディングを補償するにはマルチハーモニックの補償システムが必要である。次世代システムではマルチハーモニックベクトルrf電圧制御フィードバックを採用することで、旧システムにおけるフィードフォワード法を用いた補償よりも安定な大強度ビーム加速を実現した。本発表では、次世代システムの概要、ビーム試験結果を示すとともに、更なる性能向上に向けた取り組みについて報告する。
沖田 英史; 田村 文彦; 山本 昌亘; 野村 昌弘; 島田 太平; 吉井 正人*; 大森 千広*; 原 圭吾*; 長谷川 豪志*; 杉山 泰之*; et al.
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.840 - 844, 2021/10
J-PARC 3GeVシンクロトロン(RCS)は、ビームの加速で使用する高周波として、周回周波数の2倍の周波数である基本波と、さらにその2倍の周波数の高調波(2倍高調波)の電圧を用いたデュアルハーモニック運転を行っている。加速ギャップに発生させる各高周波の電圧と位相の安定化にはマルチハーモニックベクトルフィードバック制御が採用されている。この制御のフィードバックに用いられる測定値には、各加速空胴の加速ギャップの1つに備え付けられたギャップ電圧モニタからの出力が使用されている。ビーム進行方向のビーム分布(バンチ形状)は各高調波の相対的な位相で変化するため、ギャップ電圧モニタの位相測定値の周波数応答を正確に把握することが重要となる。そこで、ギャップ電圧モニタの位相の周波数応答測定とこれを反映したビームシミュレーションを実施した結果、実際のビーム加速試験で測定されたバンチ形状をよく再現することを確認した。本発表では、周波数応答測定とビームシミュレーションについての詳細とギャップ電圧モニタ回路についての考察について報告する。
山本 昌亘; 沖田 英史; 野村 昌弘; 島田 太平; 田村 文彦; 古澤 将司*; 原 圭吾*; 長谷川 豪志*; 大森 千広*; 杉山 泰之*; et al.
Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.1884 - 1886, 2021/08
J-PARC 3GeVシンクロトロン(RCS)では、ビームを加速する高周波電圧の発生に四極真空管を用いている。これまでのところ真空管の寿命を延ばすために、真空管に印加するフィラメント電圧を定格値よりも下げて使用している。2020年に初めて、60000時間運転したところで1本の真空管が寿命を迎えた。これは真空管メーカーが推奨(もしくは保障)する運転時間よりも長いことを意味しており、フィラメント電圧を下げることが有効であることを示唆している。しかし、フィラメント電圧を下げて使用すると、電子放出が減ることになる。大強度ビームを加速するときにはビームによって誘起される電圧(ウエイク電圧)を補償するため大振幅の陽極電流が必要となるが、フィラメントからの電子放出が少ないため、それを補おうとしてコントロールグリッド回路を駆動する半導体増幅器が出力不足になる現象が発生した。そこで、実際に印加しているフィラメント電圧の定格に対する割合を85%から95%にしたところ、同じビームパワーを加速するのに必要な半導体増幅器の出力を大幅に減少させることができた。本発表では、フィラメント電圧調整の観点から、真空管のパラメーター測定の結果について述べる。
沖田 英史; 田村 文彦; 山本 昌亘; 野村 昌弘; 島田 太平; 吉井 正人*; 大森 千広*; 杉山 泰之*; 長谷川 豪志*; 原 圭吾*; et al.
Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3020 - 3022, 2021/08
J-PARC 3GeVシンクロトロン(RCS)では、ビームの加速に基本周波数(基本波)とその二倍の周波数(二倍高調波)を重畳した電圧を用いたデュアルハーモニック運転を行っている。デュアルハーモニック運転では、基本波のみの場合と比較し、加速中のビーム進行方向のビームの線密度分布の平坦度(バンチングファクタ)を大幅に改善することが可能で、大強度ビームの安定した加速に欠かせないものとなっている。従来の低電力高周波(LLRF)制御システムが2019年に更新されたことで、現在では基本波と二倍高調波に加えて高次の高調波の制御が可能となった。そこで、バンチングファクタの更なる改善を目的とし、従来のデュアルハーモニック運転に三倍高調波を加えたトリプルハーモニック運転について検討を行った。三倍高調波を用いることで、扁平なRFバケットを実現することができ、ビームシミュレーションの結果、バンチングファクタを最大で現状の約30%改善可能であることが示された。本発表では、トリプルハーモニック運転に関するビームシミュレーションの結果と関連する試験の結果について報告する。
田村 文彦; 杉山 泰之*; 吉井 正人*; 山本 昌亘; 沖田 英史; 大森 千広*; 野村 昌弘; 島田 太平; 長谷川 豪志*; 原 圭吾*; et al.
Nuclear Instruments and Methods in Physics Research A, 999, p.165211_1 - 165211_11, 2021/05
被引用回数:6 パーセンタイル:54.32(Instruments & Instrumentation)低電力高周波(LLRF)制御システムは大強度陽子ビームの加速のために重要である。J-PARC 3GeVシンクロトロン(RCS)のLLRF制御システムは、運転開始から10年以上大きな問題なく運転されてきたが、モジュールを構成するデジタル部品の陳腐化によって今後の維持は困難となった。このため、次世代LLRF制御システムを開発した。新システムの全てのLLRF機能について動作試験を行った。この論文では、特に重要な機能であるビーム進行方向の振動を抑制するRFの位相フィードバック、複数の周波数のRF電圧を同時に制御するベクトルRF電圧フィードバックの調整について、詳細な調整手法、調整結果について報告を行う。次世代LLRF制御システムにより、設計ビーム出力である1MW相当の強度のビームを従来機より安定に加速できるようになった。
山本 昌亘; 古澤 将司*; 原 圭吾*; 長谷川 豪志*; 野村 昌弘; 大森 千広*; 島田 太平; 杉山 泰之*; 田村 文彦; 吉井 正人*
JPS Conference Proceedings (Internet), 33, p.011022_1 - 011022_6, 2021/03
J-PARCリング高周波システムではThales社製四極真空管TH589を使用し、2007年の運転開始以来長いものでは5万時間を超える運用を実現している。特に3GeVシンクロトロンにおいては、初期不良を除いてこれまで寿命を迎えた真空管は無い。TH589はトリウムタングステンを使用したフィラメントを用いており、トリウムの蒸発を抑えるために製作時に炭化を実施している。真空管の運用とともに脱炭化が進むため、フィラメントの抵抗値を測定すると徐々に下がっていくのが観測される。真空管メーカーからは、脱炭化を抑えるために定格電圧よりも低い値(10%)で運用することが推奨されている。しかし12年に及ぶ運用の経験で、電圧を低い値に固定していても抵抗値が下がるに従って電流値が増え、フィラメントの発熱が増えて脱炭化が促進されている様子が観測された。これはフィラメントの電圧だけに着目するのではなく、発熱を一定にする運用をすることが寿命を伸ばすためには必要であることを示唆しており、3GeVシンクロトロンにおいては定期的に電流値を下げる運用手法を確立した。
北村 遼; Bae, S.*; Choi, S.*; 深尾 祥紀*; 飯沼 裕美*; 石田 勝彦*; 河村 成肇*; Kim, B.*; 近藤 恭弘; 三部 勉*; et al.
Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03
被引用回数:2 パーセンタイル:26.88(Physics, Nuclear)低エネルギーミューオン源としてアルミニウム薄膜標的を用いた負ミューオニウムイオン(Mu)源を開発した。Mu
イオン源の性能評価のためMu-イオンを生成する実験を行った。Mu
イオンの測定強度は入射ミューオン強度
/sに対して
Mu
/sであった。アルミニウム標的上での入射ミューオンに対するMu
イオンの比である生成効率は
であった。このMu
イオン源はミューオン加速器の開発を促し、比較的簡便な装置による低エネルギーミューオン源の実用性を実証した。
沖田 英史; 田村 文彦; 山本 昌亘; 野村 昌弘; 島田 太平; 吉井 正人*; 大森 千広*; 杉山 泰之*; 長谷川 豪志*; 原 圭吾*; et al.
Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.674 - 678, 2020/09
近年、CERNが開発を進めている縦方向シミュレーションコードBLonD (Beam Longitudinal Dynamics)は世界の加速器で利用が進んできている。BLonDは主な部分がPythonで書かれているため可読性,汎用性が高いコードで、空胴に発生するウェーク電圧や縦方向の空間電荷力を考慮したシミュレーションが可能である。現在、J-PARC 3GeVシンクロトロン(RCS)の更なる加速技術、運転安定性の向上について検討するツールとして、BLonDの導入とベンチマークを進めている。BLonDを用いて現行の1MW運転パラメータを反映した縦方向シミュレーションを行い、縦方向のビームの電荷分布を表すバンチングファクターを計算した結果は測定値をよく再現しており、RCSの縦方向ビームシミュレーションにBLonDが有効であることを確認した。本発表ではその詳細について報告する。
野村 昌弘; 田村 文彦; 島田 太平; 山本 昌亘; 古澤 将司*; 杉山 泰之*; 原 圭吾*; 長谷川 豪志*; 大森 千広*; 吉井 正人*
Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.64 - 67, 2020/09
畳み込みニューラルネットワーク(Convolutional Neural Network:CNN)よる画像認識は、幅広い分野で用いられ、優れた結果を残している。この画像認識の技術を上手く利用すれば、人が画像から得る情報と同等かそれ以上の情報を画像から得ることができるはずである。J-PARCではマウンテンプロットと呼ばれる画像から、専門知識を持った研究者が機器の調整に必要な情報を得ている。本研究では、CNNによる画像認識の技術をこのマウンテンプロットに適用し、調整等に必要なビームに関する情報を求めてみた。その結果、画像認識技術を活用することにより、より多くの情報が得られることが分かった。今後は、実際に画像認識により求めた情報を元に機器の調整を行い、その有効性を確かめていく予定である。
須江 祐貴*; 四塚 麻衣*; 二ツ川 健太*; 長谷川 和男; 飯嶋 徹*; 飯沼 裕美*; 居波 賢二*; 石田 勝彦*; 河村 成肇*; 北村 遼; et al.
Physical Review Accelerators and Beams (Internet), 23(2), p.022804_1 - 022804_7, 2020/02
被引用回数:2 パーセンタイル:21.49(Physics, Nuclear)低エネルギー、低インテンシティーミューオンビームのビーム進行方向のバンチ幅を測定するための破壊的モニターを開発した。このバンチ幅モニター(BWM)は、1つずつのミューオンを高い分解能で測定するためにマイクロチャンネルプレートを用いている。それに加え、タイミングウオークを抑制するために、コンスタントフラクションディスクリミネータ回路を用いている。時間分解能は精密パルスレーザーを用いて65psと測定された。この分解能は、J-PARC E34実験で要求される性能を満たしている。我々は、このBWMを用いて、高周波四重極リニアックによって加速された負ミューオニウムイオンのバンチ幅を測定した。バンチ幅5411nsと測定することに成功した。
大谷 将士*; 深尾 祥紀*; 二ツ川 健太*; 河村 成肇*; 的場 史朗*; 三部 勉*; 三宅 康博*; 下村 浩一郎*; 山崎 高幸*; 長谷川 和男; et al.
Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12
被引用回数:3 パーセンタイル:78.20(Physics, Particles & Fields)負ミューオニウムはそのユニークな性質から様々な科学の分野で応用される可能性がある。1980年代に真空中で初めて生成されて以来、仕事関数の低い物質を用いて負ミューオニウム生成効率を高めることが議論されてきた。アルミナセメントの構成物質であるC12A7は良く知られた絶縁体であるが、電子をドープすることで導体として振舞うことが近年発見された。このC12A7エレクトライドは2.9eVという比較的低い仕事関数を持ち、負イオン生成効率を示すと期待されている。本論文では、従来用いていたアルミニウム、C12A7エレクトライド、さらにステンレスターゲット用いた負ミューオニウムイオン生成効率の比較について述べる。測定された生成率は10/sであり、現状セットアップではエレクトライドにおいても大きな生成率向上は確認されず、表面状態をより注意深く整える必要であることが推定される。また、生成された負ミューオニウムの平均エネルギーに材質依存はなく、0.2
0.1keVであった。
田村 文彦; 山本 昌亘; 杉山 泰之*; 吉井 正人*; 大森 千広*; 島田 太平; 野村 昌弘; 長谷川 豪志*; 原 圭吾*; 古澤 将司*
Journal of Physics; Conference Series, 1350(1), p.012189_1 - 012189_7, 2019/12
被引用回数:2 パーセンタイル:68.44(Physics, Particles & Fields)J-PARC 3GeVシンクロトロン(RCS)では高加速電圧の発生のために金属磁性体空胴が採用されている。真空管アンプで駆動される空胴は広帯域であるため、周回周波数の整数倍の周波数成分の電圧がビームによって誘起される。その影響を相殺(ビームローディング補償)するために、真空管は複数の周波数成分を持つ電圧を発生させ、誘起電圧を打ち消す必要がある。真空管の動作およびビームローディング補償を解析するために、回路の解析に広く使われているLTspiceを用いた回路モデルを構築した。モデルは空胴, アンプ, ビーム電流, 低電力高周波(LLRF)電圧制御を含む。電圧制御はさまざまなデジタル回路を含んでおり、この発表ではLTspiceでのデジタルLLRF電圧制御の回路モデル実装の詳細について述べるとともに、ビーム試験での電圧波形との比較を行っている。シミュレーション結果は比較的よく実際の電圧波形を再現した。
田村 文彦; 杉山 泰之*; 吉井 正人*; 山本 昌亘; 大森 千広*; 野村 昌弘; 島田 太平; 長谷川 豪志*; 原 圭吾*; 古澤 将司*
Physical Review Accelerators and Beams (Internet), 22(9), p.092001_1 - 092001_22, 2019/09
被引用回数:9 パーセンタイル:58.95(Physics, Nuclear)ビーム誘起電流による影響の低減(ビームローディング補償)はJ-PARC 3GeVシンクロトロン(RCS)における大強度ビーム加速に最も重要な課題の一つである。RCSでは広帯域金属磁性体空胴が用いられており、ビームの誘起する電圧は周回周波数の整数倍の成分を含むことから、それら複数の周波数成分(マルチハーモニック)の誘起電圧を抑制するビームローディング補償が必要である。これまではビーム電流の測定から補償信号を生成するRFフィードフォワード法による補償が行われており、マルチハーモニックフィードフォワードシステムは1MWまでのビーム試験においてその役割を果たしてきた。しかしながら、大強度になるにつれて補償性能の低下が確認されていた。そこで、低電力高周波(LLRF)制御システムの更新にあたり、マルチハーモニックベクトル電圧制御によるフィードバック制御を採用することとした。フィードバック制御はゲインの変動についても安定性の範囲内で性能を発揮することが期待される。本論文では、システムの構成、調整方法、大強度ビーム試験の結果について報告する。設計パワーである1MW相当のビーム加速において、ビームローディングはよく補償されている。
野村 昌弘; 田村 文彦; 島田 太平; 山本 昌亘; 古澤 将司*; 杉山 泰之*; 原 圭吾*; 長谷川 豪志*; 大森 千広*; 吉井 正人*
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.258 - 261, 2019/07
加速器の運転における使用電力量は、気温の上昇等により夏場は常に増加傾向にある。近年、夏場の気温はより高まる傾向を示していることから、気象情報から夏場の使用電力量を把握することは、契約電力の観点や節電対策を行う上でも重要になってきている。使用電力量と気象との関係は、加速器施設では多くの冷却設備を有していることから、気温や湿度が高くなれば各機器を冷却するために使用電力量が増加することは想像できるが、具体的にどのような依存性があるかは調べられていないと思われる。そこで、ニューラルネットワークをある種のフィッティング関数あるいは計算のモデルと考えて、夏場の気象が使用電力量に与える影響についての調査を行なった。具体的には、気温と湿度の情報を入力データ、加速器の使用電力量を教師データとしてニューラルネットワークに学習させ、その学習済みニューラルネットワークを用いて気象が使用電力量に与える影響について調べた。その結果、加速器の使用電力量は湿度にはほとんど影響を受けず、気温に大きく依存し、水戸の気温が10C上昇するとLinacとRCSの使用電力は約1MW増えることが判明した。
四塚 麻衣*; 飯嶋 徹*; 飯沼 裕美*; 居波 賢二*; 大谷 将士*; 河村 成肇*; 北村 遼; 近藤 恭弘; 齊藤 直人; 下村 浩一郎*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.814 - 817, 2019/07
ミューオンの異常磁気能率(g-2)は新物理の兆候が期待されている物理量であり、実験値と標準理論の予測値の間には現在3以上の乖離が確認されている。J-PARC E34実験では独自の手法による精密測定を目指しており、主要な系統誤差を削減するために低エミッタンスビームを使用する。これは、熱エネルギーまで冷却したミューオンを、速度に応じた複数段階の線形加速器を用い212MeVまで再加速することによって生成する。実験の要求から加速中のエミッタンス成長を抑える必要があるため設計値実現には異なる加速器間でのビームマッチングが重要であり、実際のビームプロファイル測定に基づいて行われる必要がある。時間方向の測定に使用するモニターには、加速位相の1%である30
40psに相当する精度が要求されている。また、イオン源開発初期のビーム強度が低い段階でも使用可能でなければならないため、ミューオン1つに対して感度を持つ必要がある。この2つの要求を満たすため、高い感度を持つマイクロチャンネルプレートと、波高依存性の削減により高時間分解能の達成が可能であるCFD回路を用いたモニターの開発を行った。また、性能評価のためにテストベンチの構築を行い、ピコ秒パルスレーザーをMCP表面に照射した際に起こる光電効果によって生成した光電子を用い、時間分解能65psの評価値を得た。本発表では、テストベンチによるモニターの性能評価結果を報告する。
須江 祐貴*; 飯嶋 徹*; 居波 賢二*; 四塚 麻衣*; 飯沼 裕美*; 中沢 雄河*; 大谷 将士*; 河村 成肇*; 下村 浩一郎*; 二ツ川 健太*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.55 - 60, 2019/07
本論文では、RFQによって89keVまで加速されたミューオンのバンチ長測定について述べる。ミューオンの性質の詳細測定のための、4種類の加速構造を持つリニアックがJ-PARCにおいて開発中である。2017年に、RFQを用いたミューオン加速の実証と横方向プロファイル測定が行われた。次の課題は、次段の加速器のアクセプタンスとビーム整合するために必要な縦方向のビームモニタである。このために、マイクロチャンネルプレートを用いた新しい縦方向ビームモニタを開発中である。このモニタは加速周波数324MHzの1%に相当する時間分解能である30から40psを目標にしている。2018年10月に、RFQによって89keVまで加速された負ミューオニウムイオンのバンチ長測定に成功した。測定されたバンチ長は、0.540.13nsであった。
四塚 麻衣*; 飯嶋 徹*; 居波 賢二*; 須江 祐貴*; 飯沼 裕美*; 中沢 雄河*; 齊藤 直人; 長谷川 和男; 近藤 恭弘; 北村 遼; et al.
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2571 - 2574, 2019/06
J-PARC E34実験はミューオンの異常磁気モーメントと電気双極子モーメントの高精度測定を目標にしている。この実験では、室温で生成されたミューオニウムをレーザー共鳴方でイオン化した超低速ミューオンを多段のリニアックで加速したミューオンビームを用いる。実験の要請を満たすには加速中のエミッタンス増大を抑えることが必要である。エミッタンス増大の主要な要因の一つは異なった加速構造間でのビームの不整合であるので、これらを測定するための縦横両方向のビームモニタが重要である。このうち、324MHzの加速構造の縦方向測定を行うモニタは、その加速周期の1%の時間分解能が要求される。さらに、ビーム調整段階でのミューオンビーム強度が非常に低いので、ミューオン1つに対する感度が必要である。これらの要求を実現するために、我々はマイクロチャンネルプレートを用いた縦方向ビームモニタを開発している。テストベンチでの分解能評価では、65psを達成した。さらに、RFQを用いたビーム試験で、縦方向バンチ長を測定することに成功した。さらに精度を高めるための改良も計画中である。本論文ではこの縦方向ビームモニタのテストベンチでの性能評価について述べる。
山本 昌亘; 野村 昌弘; 島田 太平; 田村 文彦; 古澤 将司*; 原 圭吾*; 長谷川 豪志*; 大森 千広*; 杉山 泰之*; 吉井 正人*
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2017 - 2019, 2019/06
J-PARC RCSは1MWビーム加速を達成し、さらなる高度化を目指して次の設定値としては1.2MW加速を検討している。1.2MW加速を実現するにあたっての課題の一つは、RFシステムである。現状の陽極電源は既に出力電流の限界に達しており、真空管はマルチハーモニック励振とプッシュプル動作から生じるアンバランスに対処しなければならない。これらの課題を解決するためには、加速空胴と真空管増幅器の系からなる回路網について、適切な値を選ばなければならない。本報告では、1.2MWビーム加速における真空管動作解析の結果を示し、現状の回路網の値を最適化することで1.2MW加速を達成可能であることを示す。
山本 昌亘; 野村 昌弘; 島田 太平; 田村 文彦; 古澤 将司*; 原 圭吾*; 長谷川 豪志*; 大森 千広*; 杉山 泰之*; 吉井 正人*
Journal of Physics; Conference Series, 1067, p.052014_1 - 052014_6, 2018/10
被引用回数:4 パーセンタイル:82.33(Physics, Particles & Fields)J-PARC RCSでは金属磁性体を用いた高周波加速空胴において、真空管のプッシュプル励振により高周波電力を供給している。そして、空胴の広帯域インピーダンス特性を生かしてマルチハーモニック励振及びビーム負荷補償を行っているが、プッシュプル励振はマルチハーモニック励振に際して欠点があることが判明した。それは、ビーム強度が上がってきた場合に、陽極電圧振幅のアンバランスが顕著になることである。そのためRCSのビームパワー増強に向けて、シングルエンド励振の金属磁性体空胴を考案した。これにより、陽極電圧振幅のアンバランスが本質的に発生しない空胴を実現できる。