Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 50

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Identification and quantification of a $$^{60}$$Co radiation source under an intense $$^{137}$$Cs radiation field using an application-specific CeBr$$_3$$ spectrometer suited for use in intense radiation fields

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Takahashi, Hiroyuki*

Journal of Nuclear Science and Technology, 59(8), p.983 - 992, 2022/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Development of the multi-cubic $$gamma$$-ray spectrometer and its performance under intense $$^{137}$$Cs and $$^{60}$$Co radiation fields

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*

Nuclear Instruments and Methods in Physics Research A, 1010, p.165544_1 - 165544_9, 2021/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The number of nuclear facilities being decommissioned has been increasing worldwide, in particular following the accident of the Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station in 2011. In these nuclear facilities, proper management of radioactive materials is required. Then, A $$gamma$$-ray spectrometer with four segmentations using small volume CeBr$$_{3}$$ scintillators with a dimension of $$5 times 5 times 5$$ $$rm{mm}^3$$ was developed. The four scintillators were coupled to a multi-anode photomultiplier tube specific to intense radiation fields. We performed the $$gamma$$-ray exposure study under $$^{137}$$Cs and $$^{60}$$Co radiation fields. Under the $$^{137}$$Cs radiation field, the relative energy resolution at 1375 mSv/h was the relative energy resolution at 1375 mSv/h was 9.2$$pm$$0.05%, 8.0$$pm$$0.08%, 8.0$$pm$$0.03%, and 9.0$$pm$$0.04% for the four channels, respectively.

Journal Articles

Gamma-ray spectroscopy with a CeBr$$_3$$ scintillator under intense $$gamma$$-ray fields for nuclear decommissioning

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 988, p.164900_1 - 164900_8, 2021/02

 Times Cited Count:11 Percentile:89.29(Instruments & Instrumentation)

An increasing number of nuclear facilities have been decommissioned worldwide following the 2011 accident of the TEPCO' Fukushima Daiichi Nuclear Power Station. During the decommissioning, radioactive materials have to be retrieved under proper management. In this study, a small cubic CeBr$$_3$$ spectrometer with dimensions of 5 mm $$times$$ 5 mm $$times$$ 5 mm was manufactured to perform $$gamma$$-ray spectroscopy under intense $$gamma$$-ray fields. Furthermore, thanks to a fast digital process unit and a customized photomultiplier, the device could perform $$gamma$$-ray spectroscopy at dose rates of over 1 Sv/h. The energy resolution (FWHM) at 662 keV ranged from 4.4% at 22 mSv/h to 5.2% at 1407 mSv/h for a $$^{137}$$Cs radiation field. Correspondingly, at 1333 keV, it ranged from 3.1% at 26 mSv/h to 4.2% at 2221 mSv/h for a $$^{60}$$Co radiation field, which suggested to realize $$gamma$$-ray assessment of $$^{134}$$Cs, $$^{137}$$Cs, $$^{60}$$Co, and $$^{154}$$Eu at dose rates of over 1 Sv/h.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

Journal Articles

Dose reduction measure in exchange work of valves used for agitation of highly active liquid waste in storage tank

Isozaki, Naohiko; Morimoto, Kenji; Furukawa, Ryuichi; Tsuboi, Masatoshi; Yada, Yuji; Miyoshi, Ryuta; Uchida, Toyomi; Ikezawa, Kazumi*; Kurosawa, Kenji*

Nihon Hozen Gakkai Dai-16-Kai Gakujutsu Koenkai Yoshishu, p.225 - 228, 2019/07

Highly active liquid waste, which is generated by the reprocessing of spent nuclear fuel, is stored in storage tank of Tokai Reprocessing Plant until it is vitrified. The waste solution in the tank is periodically agitated to avoid the precipitation of insoluble residues during the storage. Three way valves and ball valves have been located at the tank for agitation. Radiation dose rate at the valve location is high and operator's radiation exposure become a problem. Therefore, measures to reduce radiation exposure are performed and reported in this presentation.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2016

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Nishimura, Tomohiro; Koike, Yuko; et al.

JAEA-Review 2017-028, 177 Pages, 2018/01

JAEA-Review-2017-028.pdf:3.61MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

Journal Articles

Field test around Fukushima Daiichi Nuclear Power Plant site using improved Ce:Gd$$_{3}$$(Al,Ga)$$_{5}$$O$$_{12}$$ scintillator Compton camera mounted on an unmanned helicopter

Shikaze, Yoshiaki; Nishizawa, Yukiyasu; Sanada, Yukihisa; Torii, Tatsuo; Jiang, J.*; Shimazoe, Kenji*; Takahashi, Hiroyuki*; Yoshino, Masao*; Ito, Shigeki*; Endo, Takanori*; et al.

Journal of Nuclear Science and Technology, 53(12), p.1907 - 1918, 2016/12

 Times Cited Count:37 Percentile:96.48(Nuclear Science & Technology)

The Compton camera was improved for use with the unmanned helicopter. Increase of the scintillator array from 4$$times$$4 to 8$$times$$8 and expanse of the distance between the two layers contributed to the improvements of detection efficiency and angular resolution, respectively. Measurements were performed over the riverbed of the Ukedo river of Namie town in Fukushima Prefecture. By programming of flight path and speed, the areas of 65 m $$times$$ 60 m and 65 m $$times$$ 180 m were measured during about 20 and 30 minutes, respectively. By the analysis the air dose rate maps at 1 m height were obtained precisely with the angular resolution corresponding to the position resolution of about 10 m from 10 m height. Hovering flights were executed over the hot spot areas for 10-20 minutes at 5-20 m height. By using the reconstruction software the $$gamma$$-ray images including the hot spots were obtained with the angular resolution same as that evaluated in the laboratory (about 10$$^{circ}$$).

JAEA Reports

Synthesized research report in the second mid-term research phase, Mizunami Underground Research Laboratory Project, Horonobe Underground Research Laboratory Project and Geo-stability Project (Translated document)

Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; et al.

JAEA-Review 2016-014, 274 Pages, 2016/08

JAEA-Review-2016-014.pdf:44.45MB

We synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second midterm research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase).

Journal Articles

Progress report of Japanese simulation research projects using the high-performance computer system Helios in the International Fusion Energy Research Centre

Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03

The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2014

Hama, Katsuhiro; Mikake, Shinichiro; Ishibashi, Masayuki; Sasao, Eiji; Kuwabara, Kazumichi; Ueno, Tetsuro; Onuki, Kenji*; Beppu, Shinji; Onoe, Hironori; Takeuchi, Ryuji; et al.

JAEA-Review 2015-024, 122 Pages, 2015/11

JAEA-Review-2015-024.pdf:80.64MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technical basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase III, as the Phase II was concluded for a moment with the completion of the excavation of horizontal tunnels at GL-500m level in February 2014. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2014.

JAEA Reports

Synthesized research report in the second mid-term research phase; Mizunami Underground Research Laboratory Project, Horonobe Underground Research Laboratory Project and Geo-stability Project

Hama, Katsuhiro; Mizuno, Takashi; Sasao, Eiji; Iwatsuki, Teruki; Saegusa, Hiromitsu; Sato, Toshinori; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Yokota, Hideharu; et al.

JAEA-Research 2015-007, 269 Pages, 2015/08

JAEA-Research-2015-007.pdf:68.65MB
JAEA-Research-2015-007(errata).pdf:0.07MB

We have synthesised the research results from Mizunami/Horonobe URLs and geo-stability projects in the second mid-term research phase. It could be used as technical bases for NUMO/Regulator in each decision point from sitting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High quality construction techniques and field investigation methods have been developed and implemented and these will be directly applicable to the National Disposal Program (along with general assessments of hazardous natural events and processes). It will be crucial to acquire technical knowledge on decisions of partial backfilling and final closure by actual field experiments in Mizunami/Horonobe URLs as main themes for the next phases.

Journal Articles

Current status of R&D activities and future plan and role of JAEA's two generic URLs

Koide, Kaoru; Osawa, Hideaki; Ito, Hiroaki; Tanai, Kenji; Semba, Takeshi; Naito, Morimasa; Sugihara, Kozo; Miyamoto, Yoichi

Annual Waste Management Symposium (WM 2015), Vol.5, p.3631 - 3645, 2015/00

JAEA has promoted R&D on HLW geological disposal technology. JAEA launched the Mizunami and the Horonobe URL Projects to cover the diversity of geological environments in Japan. The Mizunami URL Project is a geoscientific research project in the crystalline rock environment. The Horonobe URL Project consists of geoscientific studies and R&D on geological disposal technology in the sedimentary rock environment. Both URL projects have been planned to proceed in three overlapping phases, Surface-based investigation Phase, Construction Phase and Operation Phase. Currently, the construction of research galleries in both of the Mizunami and the Horonobe URLs has been completed to 500 m and 350 m depths, respectively. JAEA will promote R&D activities in Phase III including study of the long-term evolution of the geological environment, and contribute to international cooperation, development of human resources and communication amongst stakeholders through both URL projects.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2013

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.

JAEA-Review 2014-038, 137 Pages, 2014/12

JAEA-Review-2014-038.pdf:162.61MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Present status of J-PARC linac

Oguri, Hidetomo; Hasegawa, Kazuo; Ito, Takashi; Chishiro, Etsuji; Hirano, Koichiro; Morishita, Takatoshi; Shinozaki, Shinichi; Ao, Hiroyuki; Okoshi, Kiyonori; Kondo, Yasuhiro; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.389 - 393, 2014/10

no abstracts in English

Journal Articles

Construction of a newly designed small-size mass spectrometer for helium isotope analysis; Toward the continuous monitoring of $$^{3}$$He/$$^{4}$$He ratios in natural fluids

Bajo, Kenichi*; Sumino, Hirochika*; Toyoda, Michisato*; Okazaki, Ryuji*; Osawa, Takahito; Ishihara, Morio*; Katakuse, Itsuo*; Notsu, Kenji*; Igarashi, Joji*; Nagao, Keisuke*

Mass Spectrometry (Internet), 1(2), p.A0009_1 - A0009_10, 2012/11

The construction of a small-size, magnetic sector, single focusing mass spectrometer (He-MS) for the continuous, on-site monitoring of the He isotope ratio ($$^{3}$$He/$$^{4}$$He) is described. The instrument is capable of measuring $$^{4}$$He/$$^{20}$$Ne ratios dissolved in several different types of natural fluids of geochemical interest, such as groundwater and gas from hot springs, volcanoes and gas well fields. Ion optics of the He-MS was designed by using the ion trajectory simulation program TRIO so as to measure $$^{3}$$He and $$^{4}$$He simultaneously with a double collector system under mass resolution power of $$>$$ 500. Presently attained specifications of the He-MS are; (1) mass resolving power of ca. 490, enough to separate $$^{3}$$He$$^{+}$$ from interfering ions, HD$$^{+}$$ and H$$_{3}$$$$^{+}$$, (2) ultra-high vacuum condition, and (3) high sensitivity enough to detect $$^{3}$$He amount 3000000 atoms).

Journal Articles

Identified charged hadron production in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.

Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06

 Times Cited Count:184 Percentile:99.44(Physics, Nuclear)

Transverse momentum distributions and yields for $$pi^{pm}, K^{pm}, p$$, and $$bar{p}$$ in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different $$sqrt{s}$$ collisions. We also present the scaling properties such as $$m_T$$ and $$x_T$$ scaling and discuss the mechanism of the particle production in $$p + p$$ collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:8 Percentile:49.7(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

JAEA Reports

Application of imaging plate to the radiation protection in the MOX fuel fabrication facility

Sagawa, Naoki; Yamazaki, Takumi; Kurosawa, Shigeyuki*; Izaki, Kenji; Mizuniwa, Harumi; Takasaki, Koji

JAEA-Technology 2010-051, 35 Pages, 2011/03

JAEA-Technology-2010-051.pdf:1.83MB

The image analysis method using a imaging plate (IP) is recent technique, and this method can get the information of radioactivity distribution by the unit of Photo Simulated Luminescence (PSL). We have investigated the PSL images obtained by measuring some plutonium samples which are radiation protection samples in order to apply imaging plate to the radiation protection at the MOX fuel facility. Plutonium spots were extracted from the PSL image extracted by the threshold, in which about 99% of the back ground was excluded, and identified by the additional requirement that the spot size is more than 40 pixels. The average background is subtracted from PSL strength of the spot area identified as Pu, and the radioactivity of the Pu spot was evaluated by multiplying the conversion calculation that is in consideration of fading.

Journal Articles

Technical know-how for modeling of a geological environment, 2; Geological modeling

Matsuoka, Toshiyuki; Amano, Kenji; Osawa, Hideaki; Semba, Takeshi

Proceedings of 13th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM 2010) (CD-ROM), p.169 - 173, 2010/10

It is important for site characterization project to manage decision-making process during site characterization project with transparency and traceability, and to accumulate and hand technical know-how on to the next generation. Evaluation of the impact of uncertainties in the geological environment model is important to identify and prioritize key issues for further investigations. The aim of the study is to support for the planning of initial surface-based site characterization based on the technical know-how accumulating from Mizunami Underground Research Laboratory Project and Horonobe Underground Research Laboratory project. In this study, the task-flow of the geological modeling, which is one of the geological environment models, and the related technical know-how using literature data have been summarized.

Journal Articles

Recent progress in the energy recovery linac project in Japan

Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05

Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.

50 (Records 1-20 displayed on this page)