Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Efficient condensation of organic colloids in deep groundwater using surface-modified nanofiltration membranes under optimized hydrodynamic conditions

Aosai, Daisuke*; Saeki, Daisuke*; Iwatsuki, Teruki; Matsuyama, Hideto*

Colloids and Surfaces A; Physicochemical and Engineering Aspects, 495, p.68 - 78, 2016/04

AA2015-0869.pdf:0.65MB

 Times Cited Count:1 Percentile:1.69(Chemistry, Physical)

The transport of radionuclides by organic colloids in deep groundwater is one of the important issues for the geological disposal of high-level radioactive waste. Because of their low concentration, it is difficult to directly analyze organic colloids in deep groundwater. In this study, hydrodynamic conditions were optimized, and surfaces of nanofiltration membranes were modified using a cationic phosphorylcholine polymer for preventing membrane fouling. Deep groundwater, obtained at the Mizunami Underground Research Laboratory in Japan, was condensed. The recovery yield of the organic colloids in the deep groundwater condensation test at 5-fold condensation was improved from 62% to 92% by the optimized hydrodynamic conditions and membrane surface modification for prevention of membrane fouling. The composition of organic colloids in the condensates was analyzed using pyrolysis gas chromatography coupled with mass spectrometry.

Journal Articles

Interactive visualization for singular fibers of functions $$f$$:$$R^{3}$$ $$rightarrow$$ $$R^{2}$$

Sakurai, Daisuke; Saeki, Osamu*; Carr, H.*; Wu, H.-Y.*; Yamamoto, Takahiro*; Duke, D.*; Takahashi, Shigeo*

IEEE Transactions on Visualization and Computer Graphics, 22(1), p.945 - 954, 2016/01

 Times Cited Count:5 Percentile:41.49(Computer Science, Software Engineering)

Scalar topology in the form of Morse theory has provided computational tools that analyze and visualize data from scientific and engineering tasks. Contracting isocontours to single points encapsulates variations in isocontour connectivity in the Reeb graph. For multivariate data, isocontours generalize to fibers inverse images of points in the range, and this area is therefore known as fiber topology. However, fiber topology is less fully developed than Morse theory, and current efforts rely on manual visualizations. This paper therefore shows how to accelerate and semi-automate this task through an interface for visualizing fiber singularities of multivariate functions $$f$$:$$R^{3}$$ $$rightarrow$$ $$R^{2}$$. This interface exploits existing conventions of fiber topology, but also introduces a 3D view based on the extension of Reeb graphs to Reeb spaces. Validation of the interface is performed by assessing whether the interface supports the mathematical workflow both of experts and of less experienced mathematicians.

Journal Articles

Concentration and characterization of organic colloids in deep granitic groundwater using nanofiltration membranes for evaluating radionuclide transport

Aosai, Daisuke*; Saeki, Daisuke*; Iwatsuki, Teruki; Matsuyama, Hideto*

Colloids and Surfaces A; Physicochemical and Engineering Aspects, 485, p.55 - 62, 2015/11

AA2015-0227.pdf:1.14MB

 Times Cited Count:5 Percentile:11.59(Chemistry, Physical)

To analyze organic colloids in deep groundwater, concentration techniques using adsorption resins and reverse osmosis membranes have been widely applied, because their concentrations in deep groundwater are very low and detection of the organic colloids in raw groundwater is difficult. However, these techniques have respective disadvantages such as chemical disturbance and membrane fouling caused by cations. To overcome their disadvantages, we propose a new concentration method using nanofiltration membranes to concentrate organic colloids rapidly without chemical disturbance and to selectively remove monovalent and divalent ions, which may cause inorganic and/or organic fouling. Concentration performance of the NF and RO membranes for aqueous solutions for humic acids was evaluated using a laboratory-scale membrane test unit. The time course of permeate flux and concentration of humic acids were measured. These membranes were applied to the concentration of actual groundwater.

Journal Articles

Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

Omichi, Masaaki*; Asano, Atsushi*; Tsukuda, Satoshi*; Takano, Katsuyoshi*; Sugimoto, Masaki; Saeki, Akinori*; Sakamaki, Daisuke*; Onoda, Akira*; Hayashi, Takashi*; Seki, Shu*

Nature Communications (Internet), 5, p.3718_1 - 3718_8, 2014/04

 Times Cited Count:35 Percentile:78.11(Multidisciplinary Sciences)

Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

4 (Records 1-4 displayed on this page)
  • 1