Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iwatsuki, Teruki; Sato, Haruo; Tanai, Kenji; Inagaki, Manabu; Sawada, Atsushi; Niinuma, Hiroaki; Ishii, Eiichi; Maekawa, Keisuke; Tomura, Goji; Sanada, Hiroyuki; et al.
JAEA-Research 2009-002, 156 Pages, 2009/05
The research and development plan for geological investigation, engineering technology and safety assessment during the drilling of a shaft down to intermediate depth are summarized according to the Midterm Plan till 2009 Fiscal year of JAEA. This report describes subject, current status and programme in the "Phase 2: Construction phase" (investigations during construction of the underground facilities). Furthermore regarding R&D plan in next Midterm Plan of JAEA, preliminary ideas are summarized.
Nakahira, Masataka; Shibanuma, Kiyoshi; Kajiura, Soji*; Shibui, Masanao*; Koizumi, Koichi; Takeda, Nobukazu; Kakudate, Satoshi; Taguchi, Ko*; Oka, Kiyoshi; Obara, Kenjiro; et al.
JAERI-Tech 2002-029, 27 Pages, 2002/03
The ITER vacuum vessel (VV) R&D has progressed with the international collaborative efforts by the Japan, Russia and US Parties during the Engineering Design Activities (EDA). Fabrication and testing of a full-scale VV sector model and a port extension have yielded critical information on the fabrication and assembly technologies of the vacuum vessel, magnitude of welding distortions, dimensional accuracy and achievable tolerances during sector fabrication and field assembly. In particular, the dimensional tolerances of 3 mm for VV sector fabrication and
10 mm for VV sector field assembly have been achieved and satisfied the requirements of
5 mm and
20 mm, respectively. Also, the basic feasibility of the remote welding robot has been demonstrated. This report presents detailed fabrication and assembly technologies such as welding technology applicable to the thick wall without large distortion, field joint welding technology between sectors and remote welding technology through the VV R&D project.
Kasuga, Shoji*; Kubota, Kenichi*; Okamoto, Futoshi*; Maekawa, Isamu*; Furihata, Noboru*; Saito, Masanao*; Kido, Yuji*; Ohashi, Hirofumi; Tachibana, Yukio; Kunitomi, Kazuhiko
no journal, ,
Conceptual design of a small-sized HTGR for electricity generation and district heating has been conducted by JAEA with support of Japanese vendors: Toshiba Corporation, Fuji Electric, Kawasaki Heavy Industries, Nuclear Fuel Industries, Shimizu Corporation, and Marubeni Utility Services. System design as well as nuclear design of the first core of HTR50S using the same CFPs as the HTTR has been performed and the nuclear design shows upgraded performance of the reactor compared with the HTTR.