Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shimizu, Kazuyuki*; Yamaguchi, Masatake; Akamaru, Satoshi*; Nishimura, Katsuhiko*; Abe, Rion*; Sasaki, Taisuke*; Wang, Y.*; Toda, Hiroyuki*
Scripta Materialia, 265, p.116730_1 - 116730_7, 2025/08
Joung, S.*; Ji, Y.-Y.*; Choi, Y.*; Lee, E.*; Ji, W.*; Sasaki, Miyuki; Ochi, Kotaro; Sanada, Yukihisa
Journal of Instrumentation (Internet), 20(4), p.P04027_1 - P04027_10, 2025/04
Morishita, Yuki; Peschet, L.; Yamada, Tsutomu*; Nakasone, Takamasa*; Kanno, Marina*; Sasaki, Miyuki; Sanada, Yukihisa; Torii, Tatsuo*
Radiation Measurements, 183, p.107414_1 - 107414_6, 2025/04
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In the decommissioning nuclear facilities, it is crucial to inspect piping for contamination to prevent worker exposure to alpha-emitting nuclides. Traditional methods using gamma rays and neutrons are inadequate for detecting small amounts of alpha nuclides due to the short range (approximately 4 cm) of alpha particles in air. To address this, we developed a compact detector capable of distinguishing between alpha particles for direct measurement within pipes. This detector, comprising a ZnS(Ag) scintillator for alpha particles and a plastic scintillator for beta particles (gamma rays), was coupled to a small photomultiplier tube. The system demonstrated high accuracy in differentiating between alpha and beta radiation through pulse shape discrimination (PSD). Monte Carlo simulations and empirical measurements confirmed the detector's effectiveness, achieving a 51.3% detection efficiency for alpha particles with negligible sensitivity to beta and gamma radiation. This innovation presents a significant advancement for direct alpha contamination measurement in environments with high beta and gamma backgrounds, such as the Fukushima Daiichi Nuclear Power Plant decommissioning site.
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; et al.
JAEA-Technology 2024-022, 170 Pages, 2025/03
On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake caused a tsunami that led to the Fukushima Daiichi Nuclear Power Station accident, releasing radioactive material into the environment. Since then, Aerial Radiation Monitoring (ARM) using manned helicopters has been employed to measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) utilizes this technology for emergency monitoring during nuclear facility accidents, aiming to provide prompt results by pre-arranging information on background radiation, topography, and control airspaces around nuclear power plants nationwide. In fiscal year 2023, the commissioned project included conducting ARM around the Sendai Nuclear Power Station and preparing related information. To enhance effectiveness during emergencies, ARM and the first domestic training flight of Unmanned Aerial Vehicles (UAVs) were conducted during the FY2023 Nuclear Energy Disaster Prevention Drill. Furthermore, UAVs radiation monitoring technology was advanced by selecting UAVs and investigating their performance. This report summarizes the results and technical issues identified providing insights to improve emergency preparedness.
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Nagakubo, Azusa; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; et al.
JAEA-Technology 2024-021, 232 Pages, 2025/03
The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011, caused a tsunami that led to the TEPCO's Fukushima Daiichi Nuclear Power Station (FDNPS) accident, releasing a large amount of radioactive material into the surrounding environment. Since the accident, Aerial Radiation Monitoring (ARM) has been used to quickly and widely measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) has continuously conducted ARM around FDNPS using manned and unmanned helicopters. This report summarizes the monitoring results for fiscal year 2023, evaluates changes in dose rate from past results, and discusses the factors contributing to these changes. Additionally, an analysis considering terrain undulation was conducted to improve accuracy for converting ARM data into dose rate. Furthermore, a method to discriminate airborne radon progeny was applied for ARM results to evaluate its impact. Moreover, to perform wide-area monitoring more efficiently, we advanced the development of unmanned airplane monitoring technology.
Kokubun, Yuji; Hosomi, Kenji; Nagaoka, Mika; Seya, Natsumi; Inoue, Kazumi; Koike, Yuko; Uchiyama, Rei; Sasaki, Kazuki; Maehara, Yushi; Matsuo, Kazuki; et al.
JAEA-Review 2024-054, 168 Pages, 2025/03
The Nuclear Fuel Cycle Engineering Laboratories conducts environmental radiation monitoring around the reprocessing plant in accordance with the "Safety Regulations for Reprocessing Plant of JAEA, Part IV: Environmental Monitoring". This report summarizes the results of environmental radiation monitoring conducted during the period from April 2023 to March 2024 and the results of dose calculations for the surrounding public due to the release of radioactive materials from the plant into the atmosphere and ocean. In the results of the above environmental radiation monitoring, several items were affected by radioactive materials emitted from the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, Incorporated (changed to Tokyo Electric Power Holdings, Inc. on April 1, 2016), which occurred in March 2011. In addition, environmental monitoring plan, analysis and measurement methods, monitoring data and their chronological change, meteorological data after statistical processing, status of radioactive waste release and evaluation results of the data over the normal range are included as appendices.
Shimizu, Kazuyuki*; Toda, Hiroyuki*; Hirayama, Kyosuke*; Fujihara, Hiro*; Tsuru, Tomohito; Yamaguchi, Masatake; Sasaki, Taisuke*; Uesugi, Masayuki*; Takeuchi, Akihisa*
International Journal of Hydrogen Energy, 109, p.1421 - 1436, 2025/03
Times Cited Count:1 Percentile:0.00(Chemistry, Physical)Our preceding investigation revealed that multiple hydrogen traps at coherent interfaces of MgZn precipitates initiated spontaneous interface decohesion, causing hydrogen-induced quasicleavage cracking in Al-Zn-Mg alloys. Herein, we performed a quantitative and systematic investigation to discern the mechanisms by which hydrogen trapped at coherent/semi-coherent interfaces of precipitates could influence macroscopic hydrogen embrittlement by modulating the coherent interface of MgZn
through aging. To explore this hydrogen embrittlement phenomenon based on hydrogen trapping at the precipitate interface, we determined the hydrogen trapping energy of the semi-coherent MgZn
interface via first-principles calculations (0.56 eV/atom). Hydrogen partitioning of all hydrogen trapping sites, including vacancies, grain boundaries, and coherent and semi-coherent MgZn
interfaces, revealed that in overaged alloys, over 90% of the hydrogen was sequestered at semi-coherent interfaces. Owing to the inherent characteristics of the MgZn
interface, the hydrogen sequestered at the semi-coherent interface decreased the interfacial cohesive energy, causing semispontaneous decohesion of the interface and quasicleavage fracture in the Al-Zn-Mg alloys. These results implied that intergranular fracture was not directly induced by hydrogen trapped at grain boundaries but rather by the decohesion of precipitate interfaces along grain boundaries.
Sasaki, Miyuki; Abe, Yuki*; Sanada, Yukihisa; Torii, Tatsuo*
Nuclear Instruments and Methods in Physics Research A, 1072, p.170207_1 - 170207_12, 2025/03
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)We have developed an omnidirectional radiation imager with fractal geometry named the FRIE system. This paper presents the development and evaluation of the FRIE system, designed to accurately estimate radioactivity distribution within decommissioning environments, such as the Fukushima Daiichi Nuclear Power Station. The FRIE system is a unit of tetrahedral radiation sensors; 16 sensors are arranged in a Sierpinski tetrahedron shape, and the space between the sensors is filled with tungsten-based alloy for radiation shielding. This study assessed the performance of the FRIE system in estimating radiation distribution through simulations and actual measurement tests. From the results of the simulations and experimental data, it was confirmed that by maintaining a measurement density of at least 2 points/m, limiting the positional error to within
10 cm, and the angular error to within
10 degrees, it is possible to estimate the source location with an angular resolution of approximately 30 degrees. Future improvements in the arrangement of the FRIE system's crystals and shielding should enhance the performance metrics. This research signifies a pioneering implementation of fractal-based radiation imaging technology, offering a new direction in radiation measurement.
Owada, Mitsuhiro; Nakanishi, Yoshiki; Murokawa, Toshihiro; Togashi, Kota; Saito, Katsunori; Nonaka, Kazuharu; Sasaki, Yu; Omori, Koji; Chinone, Makoto; Yasu, Hideto; et al.
JAEA-Technology 2024-013, 221 Pages, 2025/02
The uranium enrichment facilities at the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency (JAEA) were constructed sequentially to develop uranium enrichment technology with centrifugal separation method. The developed technologies were transferred to Japan Nuclear Fuel Limited until 2001. And the original purpose has been achieved. Wastewater Treatment Facility, one of the uranium enrichment facilities, was constructed in 1976 to treat radioactive liquid waste generated at the facilities, and it finished the role in 2008. In accordance with the Medium/Long-Term Management Plan of JAEA Facilities, interior equipment installed in this facility had been dismantled and removed since November 2021 to August 2023. This report summarizes the findings obtained through the work related to dismantling and removal of interior equipment for decommissioning of Wastewater Treatment Facility.
Tonna, Ryutaro*; Sasaki, Takayuki*; Okamoto, Yoshihiro; Kobayashi, Taishi*
Journal of Nuclear Materials, 605, p.155561_1 - 155561_9, 2025/02
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Sasaki, Yuji; Kaneko, Masashi; Ban, Yasutoshi; Suzuki, Tatsuya*
Solvent Extraction Research and Development, Japan, 32(1), p.21 - 29, 2025/00
The magnitude of the masking effect of carboxylic, amic-acidic, and amidic compounds through Ln and Am extractions by tetraoctyl diglycolamide (TODGA) is compared. The compounds used are diglycol, ethylenediamine, diethylenetriamine-type, and two other amides (dioxaoctane diamide and nitrylotriacetamide). The results show that below pH 1.2, where carboxylic acids are less dissociated, amide O atoms have higher reactivity with lanthanides than O atoms in carboxyl groups. From observing the Ln patterns (D(Ln) vs. their atomic number), the compounds primarily show high reactivity, with middle and heavy Ln having a higher charge density than light Ln. Four amide compounds are employed in this work. Those with tertiary amine N atoms have pH dependence on D(Ln) due to protonation and dissociation from amine N atoms.
Matsumiya, Masahiko*; Tokumitsu, Shun*; Mishima, Takumi*; Sasaki, Yuji
ECS Advances (Internet), 3(4), p.043001_1 - 043001_8, 2024/12
The extraction behavior of Rh(III) with Hexahexyl-nitrilotriacetamide, NTAamide(C6) was investigated in three different diluents (acetophenone, AP, 1,2-dichloroethane, DCE, and 1-octanol, OC). The electrochemical behavior of the extracted Rh(III) complex in each diluent was investigated from linear sweep voltammetry. It was revealed that Rh(III) was reduced to Rh(0) metal by a three electron transfer in NTAamide(C6)/AP, DCE and OC system. The electrodeposits can be recovered from continuous solvent extraction and direct electrodeposition. The electrodeposits were identified by XPS and XRD analyses as mainly Rh metal.
Iwami, Satone*; Yamashita, Takuma*; Mitsuyasu, Yusuke*; Ono, Kenta*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Sekine, Tsutomu*; Shimizu, Yoshinaka*; Chiba, Mirei*; et al.
KEK Proceedings 2024-6, p.91 - 95, 2024/12
We aim to improve the detection limit of the ESR dosimetry method. In this study, the saturation behavior of each radical was investigated by varying the microwave power during ESR measurement. Based on the difference in spin relaxation time between carbonate radicals and native radicals, it is expected that the signal-to-noise ratio improves and the detection limit can be lowered when the microwave power is increased to 4.0 mW.
Yamashita, Takuma*; Iwami, Satone*; Mitsuyasu, Yusuke*; Ono, Kenta*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Sekine, Tsutomu*; Shimizu, Yoshinaka*; Chiba, Mirei*; et al.
KEK Proceedings 2024-6, p.85 - 90, 2024/12
To clarify the radiation effects of the accident at the TEPCO's Fukushima Daiichi NPP on living organisms, it is important to accurately estimate the dose to each individual. We have developed a multi-component analysis program using random number optimization to extract only the components derived from carbonate radicals from the ESR spectra.
Kato, Yuto*; Sasaki, Takayuki*; Tonna, Ryutaro*; Kobayashi, Taishi*; Okamoto, Yoshihiro
Applied Geochemistry, 175, p.106196_1 - 106196_9, 2024/11
Times Cited Count:1 Percentile:0.00(Geochemistry & Geophysics)Tokumitsu, Shun*; Mishima, Takumi*; Matsumiya, Masahiko*; Sasaki, Yuji
Journal of Molecular Liquids, 414, Part A, p.126150_1 - 126150_8, 2024/11
The coordination states of Ln(III), (Ln=Pr, Nd, Tb and Dy) in ILs were investigated by Raman spectroscopy. The thermodynamic properties for the isomerism of [TFSA]- from trans- to cis-isomer were evaluated. The cis-[TFSA]- conformer bound to Ln3+ cation was the preferred coordination state of [Ln(III)(cis-TFSA)5]2-. The bonding energies of [Ln(III)(cis-TFSA)5]2-, (Ln=Pr, Nd, Tb and Dy) were estimated from DFT calculation.
Kobayashi, Taishi*; Sato, Yutaro*; Tonna, Ryutaro*; Matsumura, Daiju; Sasaki, Takayuki*; Ikeda, Atsushi
Dalton Transactions (Internet), 53(46), p.18616 - 18628, 2024/10
Times Cited Count:0 Percentile:0.00(Chemistry, Inorganic & Nuclear)Sasaki, Yuji; Kaneko, Masashi; Matsumiya, Masahiko*
Chemistry Letters, 53(9), p.upae164_1 - upae164_4, 2024/09
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Ion-pair extractions enable to recover the anionic metal ions, such as TcO and ReO
, using cationic extractant. Recently the noble metals in hydrochloric acid are extracted by extractants having secondary and tertiary amino N atoms in their structures. Following this, extractions of Zr, Hf, Nb and Ta, metal anions present in sulfonic and hydrofluoric acids, are examined using this technique. Zr and Hf in H
SO
, and Zr, Hf, Nb and Ta in HF can be extracted by NTAamide, MIDOA and TOA, and a basic information on their extraction behavior is obtained in this work.
Ishibashi, Ryo*; Hirosaka, Kazuma*; Yamana, Takashi*; Shibata, Masatoshi*; Sasaki, Masana*; Nemoto, Yoshiyuki; Hinoki, Tatsuya*
Proceedings of TopFuel 2024 (Internet), 9 Pages, 2024/09
Sasaki, Yuji; Kaneko, Masashi; Ban, Yasutoshi; Suzuki, Hideya*
Journal of Nuclear Science and Technology, 61(7), p.883 - 893, 2024/07
Times Cited Count:3 Percentile:65.16(Nuclear Science & Technology)The mutual separation of Am and Cm is conducted using an alkyl-diamide amine (ADAAM) extractant. ADAAM exhibits extremely high separation factor with respect to Am and Cm separation (5.9) in a nitric acid--dodecane system. The batch-wise multistage extractions are performed using a system containing 0.2 M ADAAM and 1.5 M nitric acid. In this multistage extraction, an organic solvent give 96.5% and 1.06% yields of Am and Cm. After the mutual separation of Am and Cm, an additional extraction step is included to reduce the volumes of these aqueous and organic phases. Taking these steps, Am and Cm can be recovered in just two or three stages in the aqueous phases.