Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 355

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Background aerial monitoring and UAV radiation monitoring technology development for emergency response and preparedness in fiscal year 2023 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; et al.

JAEA-Technology 2024-022, 170 Pages, 2025/03

JAEA-Technology-2024-022.pdf:15.09MB

On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake caused a tsunami that led to the Fukushima Daiichi Nuclear Power Station accident, releasing radioactive material into the environment. Since then, Aerial Radiation Monitoring (ARM) using manned helicopters has been employed to measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) utilizes this technology for emergency monitoring during nuclear facility accidents, aiming to provide prompt results by pre-arranging information on background radiation, topography, and control airspaces around nuclear power plants nationwide. In fiscal year 2023, the commissioned project included conducting ARM around the Sendai Nuclear Power Station and preparing related information. To enhance effectiveness during emergencies, ARM and the first domestic training flight of Unmanned Aerial Vehicles (UAVs) were conducted during the FY2023 Nuclear Energy Disaster Prevention Drill. Furthermore, UAVs radiation monitoring technology was advanced by selecting UAVs and investigating their performance. This report summarizes the results and technical issues identified providing insights to improve emergency preparedness.

JAEA Reports

Aerial monitoring around TEPCO's Fukushima Daiichi Nuclear Power Station and development of radiation monitoring technology for unmanned airplanes in fiscal year 2023 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Nagakubo, Azusa; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; et al.

JAEA-Technology 2024-021, 232 Pages, 2025/03

JAEA-Technology-2024-021.pdf:25.79MB

The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011, caused a tsunami that led to the TEPCO's Fukushima Daiichi Nuclear Power Station (FDNPS) accident, releasing a large amount of radioactive material into the surrounding environment. Since the accident, Aerial Radiation Monitoring (ARM) has been used to quickly and widely measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) has continuously conducted ARM around FDNPS using manned and unmanned helicopters. This report summarizes the monitoring results for fiscal year 2023, evaluates changes in dose rate from past results, and discusses the factors contributing to these changes. Additionally, an analysis considering terrain undulation was conducted to improve accuracy for converting ARM data into dose rate. Furthermore, a method to discriminate airborne radon progeny was applied for ARM results to evaluate its impact. Moreover, to perform wide-area monitoring more efficiently, we advanced the development of unmanned airplane monitoring technology.

JAEA Reports

Background radiation monitoring via manned helicopter and development of technology for radiation monitoring via unmanned airplane for application of nuclear emergency response technique in the fiscal year 2022 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.

JAEA-Technology 2023-026, 161 Pages, 2024/03

JAEA-Technology-2023-026.pdf:14.66MB

By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been utilized as a method to quickly and extensively measure radiation distribution surrounding FDNPS. In order to utilize ARM and to promptly provide the results during a nuclear emergency, information on background radiation levels, topographical features, and controlled airspace surrounding nationwide nuclear facilities have been prepared in advance. In the fiscal year 2022, we conducted ARM around the Mihama Nuclear Power Station of Kansai Electric Power Company (KEPCO), the Tsuruga Power Station of Japan Atomic Power Company (JAPC), and the Ikata Power Station of Shikoku Electric Power Company (YONDEN), and prepared information on background radiation doses and controlled airspace. In addition, we have developed an aerial radiation detection system via unmanned airplane, which is expected to be an alternative to ARM, during a nuclear emergency. This report summarizes the results and technical issues identified.

Journal Articles

Dissolution behavior and aging of iron-uranium oxide

Tonna, Ryutaro*; Sasaki, Takayuki*; Okamoto, Yoshihiro; Kobayashi, Taishi*; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*

Journal of Nuclear Materials, 589, p.154862_1 - 154862_10, 2024/02

 Times Cited Count:2 Percentile:49.11(Materials Science, Multidisciplinary)

The dissolution behavior of FeUO$$_{4}$$ compounds formed by a high-temperature reaction of UO$$_{2}$$ with iron, a stainless-steel component of reactor structural materials, was investigated under atmospheric conditions. The compounds were prepared in an electric furnace using U$$_{3}$$O$$_{8}$$ and Fe$$_{3}$$O$$_{4}$$ as starting materials, and their solid states were analyzed using X-ray diffraction, scanning electron microscopy energy dispersive X-ray spectroscopy, and X-ray absorption fine structure spectroscopy. The concentration of nuclides dissolved in water was examined by performing static leaching tests of FeUO$$_{4}$$ compounds for up to three months. A redox reaction was proposed to occur between trivalent Fe and pentavalent U ions in the early stage of FeUO$$_{4}$$ dissolution. It was thermodynamically deduced that the reduced divalent Fe ion was finally oxidized into a trivalent ion in the presence of dissolved oxygen, and iron hydroxide limited the solubility of Fe. Meanwhile, the concentration of hexavalent U (i.e., uranyl ion) was limited owing to the presence of secondary minerals such as metaschoepite and sodium uranate and subsequently decreased, possibly owing to sorption on Fe oxides, for example. The concentrations of multivalent ions of fission products, such as Ru and Ce, also decreased, likely for the reason above. By contrast, the concentration of soluble Cs ions did not decrease. The validity of this interpretation was supported by comparing the results with the dissolution behavior of a reference sample (Fe-free U$$_{3}$$O$$_{8}$$).

JAEA Reports

Analysis of deposits inside the reactor at Fukushima Daiichi Nuclear Power Station in JFY2021; The Subsidy program of "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris)" starting FY2021

Ikeuchi, Hirotomo; Sasaki, Shinji; Onishi, Takashi; Nakayoshi, Akira; Arai, Yoichi; Sato, Takumi; Ohgi, Hiroshi; Sekio, Yoshihiro; Yamaguchi, Yukako; Morishita, Kazuki; et al.

JAEA-Data/Code 2023-005, 418 Pages, 2023/12

JAEA-Data-Code-2023-005-01.pdf:24.59MB
JAEA-Data-Code-2023-005-02.pdf:32.18MB

For safe and steady decommissioning of Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station (1F), information concerning composition and physical/chemical properties of fuel debris generated in the reactors should be estimated and provided to other projects conducting the decommissioning work including the retrieval of fuel debris and the subsequent storage. For this purpose, in FY2021, samples of contaminants (the wiped smear samples and the deposits) obtained through the internal investigation of the 1F Unit 2 were analyzed to clarify the components and to characterize the micro-particles containing uranium originated from fuel (U-bearing particles) in detail. This report summarized the results of analyses performed in FY2021, including the microscopic analysis by SEM and TEM, radiation analysis, and elemental analysis by ICP-MS, as a database for evaluating the main features of each sample and the probable formation mechanism of the U-bearing particles.

Journal Articles

Current location of fuel debris chemistry

Sato, Nobuaki*; Kirishima, Akira*; Sasaki, Takayuki*; Takano, Masahide; Kumagai, Yuta; Sato, Soichi; Tanaka, Kosuke

Current Location of Fuel Debris Chemistry, 178 Pages, 2023/11

Considerable efforts have been devoted to the decommissioning of the TEPCO's Fukushima Daiichi Nuclear Power Station (1F) and now the retrieval of fuel debris is being proceeded on a trial basis. It can be said that the succession of science and technology related to debris, that is, human resource development, is important and indispensable. For that reason, we thought that a specific textbook on decommissioning is necessary. Regarding the 1F fuel debris, we still do not know enough, and it would be difficult to describe the details. However, 12 years have passed since the accident, and we have come to understand the situation of 1F to a certain extent. At this stage, it is essential for future development to organize the current situation by combining examples of past severe accidents. Therefore, we presented in this book the current state of fuel debris chemistry research from the perspectives of solid chemistry, solution chemistry, analytical chemistry, radiochemistry, and radiation chemistry.

Journal Articles

Summary report in FY2022 of subsidy program for "the Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy, Thermal behavior Estimation, and Simplified Analysis of Fuel Debris)" started in FY2011

Koyama, Shinichi; Ikeuchi, Hirotomo; Mitsugi, Takeshi; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Tsai, T.-H.; Takano, Masahide; Fukaya, Hiroyuki; Nakamura, Satoshi; et al.

Hairo, Osensui, Shorisui Taisaku Jigyo Jimukyoku Homu Peji (Internet), 216 Pages, 2023/11

In FY 2021 and 2022, JAEA perfomed the subsidy program for "the Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy, Thermal Bahavior Estimation, and Simplified Analysis of Fuel Debris)" started in FY 2021. This presentation material summarized the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning, Contaminated Water and Treated Water Management.

Journal Articles

Raman identification and characterization of chemical components included in simulated nuclear fuel debris synthesized from uranium, stainless steel, and zirconium

Kusaka, Ryoji; Kumagai, Yuta; Watanabe, Masayuki; Sasaki, Takayuki*; Akiyama, Daisuke*; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Science and Technology, 60(5), p.603 - 613, 2023/05

 Times Cited Count:5 Percentile:63.07(Nuclear Science & Technology)

Journal Articles

Phase analysis of simulated nuclear fuel debris synthesized using UO$$_{2}$$, Zr, and stainless steel and leaching behavior of the fission products and matrix elements

Tonna, Ryutaro*; Sasaki, Takayuki*; Kodama, Yuji*; Kobayashi, Taishi*; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Kumagai, Yuta; Kusaka, Ryoji; Watanabe, Masayuki

Nuclear Engineering and Technology, 55(4), p.1300 - 1309, 2023/04

 Times Cited Count:6 Percentile:82.11(Nuclear Science & Technology)

Simulated debris was synthesized using UO$$_{2}$$, Zr, and stainless steel and a heat treatment method under inert or oxidizing conditions. The primary U solid phase of the debris synthesized at 1473 K under inert conditions was UO$$_{2}$$, whereas a (U,Zr)O$$_{2}$$ solid solution formed at 1873 K. Under oxidizing conditions, a mixture of U$$_{3}$$O$$_{8}$$ and (Fe,Cr)UO$$_{4}$$ phases formed at 1473 K whereas a (U,Zr)O$$_{2+x}$$ solid solution formed at 1873 K. The leaching behavior of the fission products from the simulated debris was evaluated using two methods: the irradiation method, for which fission products were produced via neutron irradiation, and the doping method, for which trace amounts of non-radioactive elements were doped into the debris. The dissolution behavior of U depended on the properties of the debris and aqueous medium the debris was immersed in. Cs, Sr, and Ba leached out regardless of the primary solid phases. The leaching of high-valence Eu and Ru ions was suppressed, possibly owing to their solid-solution reaction with or incorporation into the uranium compounds of the simulated debris.

JAEA Reports

Background radiation monitoring via manned helicopter for application of technique of nuclear emergency response in the fiscal year 2021 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Hokama, Tomonori; et al.

JAEA-Technology 2022-028, 127 Pages, 2023/02

JAEA-Technology-2022-028.pdf:15.21MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report has summarized the knowledge noted above achieved by the aerial radiation monitoring around Ohi and Takahama nuclear power stations. In addition, the examination's progress aimed at introducing airborne radiation monitoring via an unmanned plane during a nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Development of technologies for enhanced analysis accuracy of fuel debris; Summary results of the 2020 fiscal year (Subsidy program for the project of decommissioning and contaminated water management)

Ikeuchi, Hirotomo; Koyama, Shinichi; Osaka, Masahiko; Takano, Masahide; Nakamura, Satoshi; Onozawa, Atsushi; Sasaki, Shinji; Onishi, Takashi; Maeda, Koji; Kirishima, Akira*; et al.

JAEA-Technology 2022-021, 224 Pages, 2022/10

JAEA-Technology-2022-021.pdf:12.32MB

A set of technology, including acid dissolving, has to be established for the analysis of content of elements/nuclides in the fuel debris samples. In this project, a blind test was performed for the purpose of clarifying the current level of analytical accuracy and establishing the alternative methods in case that the insoluble residue remains. Overall composition of the simulated fuel debris (homogenized powder having a specific composition) were quantitatively determined in the four analytical institutions in Japan by using their own dissolving and analytical techniques. The merit and drawback for each technique were then evaluated, based on which a tentative flow of the analyses of fuel debris was constructed.

Journal Articles

Structure, stability, and actinide leaching of simulated nuclear fuel debris synthesized from UO$$_{2}$$, Zr, and stainless-steel

Kirishima, Akira*; Akiyama, Daisuke*; Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Sasaki, Takayuki*; Sato, Nobuaki*

Journal of Nuclear Materials, 567, p.153842_1 - 153842_15, 2022/08

 Times Cited Count:9 Percentile:80.08(Materials Science, Multidisciplinary)

To understand the chemical structure and stability of nuclear fuel debris consisting of UO$$_{2}$$, Zr, and Stainless Steel (SUS) generated by the Fukushima Daiichi Nuclear Power Plant accident in Japan in 2011, simulated debris of the UO$$_{2}$$-SUS-Zr system and other fundamental component systems were synthesized and characterized. The simulated debris were synthesized by heat treatment for 1 to 12 h at 1600$$^{circ}$$C, in inert (Ar) or oxidative (Ar + 2% O$$_{2}$$) atmospheres. $$^{237}$$Np and $$^{241}$$Am tracers were doped for the leaching tests of these elements and U from the simulated debris. The characterization of the simulated debris was conducted by XRD, SEM-EDX, Raman spectroscopy, and M$"o$ssbauer spectroscopy, which provided the major uranium phase of the UO $$_{2}$$-SUS-Zr debris was the solid solution of U$$^{mathrm{IV}}$$O$$_{2}$$ (s.s.) with Zr(IV) and Fe(II) regardless of the treatment atmosphere. The long-term immersion test of the simulated debris in pure water and that in seawater revealed the macro scale crystal structure of the simulated debris was chemically very stable in the wet condition for a year or more. Furthermore, the leaching test results showed that the actinide leaching ratios of U, Np, Am from the UO$$_{2}$$-SUS-Zr debris were very limited and less than 0.08 % for all the experiments in this study.

Journal Articles

Uranium dissolution and uranyl peroxide formation by immersion of simulated fuel debris in aqueous H$$_{2}$$O$$_{2}$$ solution

Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Sasaki, Takayuki*

Journal of Nuclear Science and Technology, 59(8), p.961 - 971, 2022/08

 Times Cited Count:3 Percentile:44.16(Nuclear Science & Technology)

We investigated potential degradation of fuel debris caused by H$$_{2}$$O$$_{2}$$, which is the oxidant of major impact from water radiolysis. We performed leaching experiments on different kinds of simulated debris comprising U, Fe, Cr, Ni, and Zr in an aqueous H$$_{2}$$O$$_{2}$$ solution. Chemical analysis of the leaching solution showed that U dissolution was induced by H$$_{2}$$O$$_{2}$$. Raman analysis after the leaching revealed that uranyl peroxides were formed on the surface of the simulated debris. These results demonstrate that uranyl peroxides are possible alteration products of fuel debris from H$$_{2}$$O$$_{2}$$ reaction. However, the sample in which the main uranium-containing phase was a U-Zr oxide solid solution showed much less uranium dissolution and no Raman signal of uranyl peroxides. Comparison of these results indicates that formation of an oxide solid solution of Zr with UO$$_{2}$$ improves the stability of fuel debris against H$$_{2}$$O$$_{2}$$ reaction.

Journal Articles

A Study of H$$_{2}$$O$$_{2}$$-induced oxidative degradation of simulated fuel debris

Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Sasaki, Takayuki*

Hoshasen Kagaku (Internet), (113), p.61 - 64, 2022/04

The severe accident at TEPCO's Fukushima Daiichi Nuclear Power Station resulted in generation of fuel debris. The fuel debris is in contact with water and the radiolysis of water can accelerate degradation of the debris. The analysis of particles sampled from inside or near the damaged reactors indicates the complicated compositions of the fuel debris. It is challenging to estimate the effect of water radiolysis on such a complicated material. Therefore, in this study, we investigated the potential degradation process by leaching experiments of simulated fuel debris in aqueous H$$_{2}$$O$$_{2}$$ solution. The results show that the reaction of H$$_{2}$$O$$_{2}$$ induced uranium dissolution from most of the samples and then formation of uranyl peroxides. In contrast, a sample that had U-Zr oxide solid solution as the major phase exhibited remarkable resistance to H$$_{2}$$O$$_{2}$$. These findings revealed that the degradation of the simulated debris reflects the reactivity and stability of the uranium phase in the matrices.

JAEA Reports

Analysis of deposits inside the reactor at Fukushima Daiichi Nuclear Power Station in JFY 2017-2018; The Subsidy programs "Project of Decommissioning and Contaminated Water Management in the FY2016 Supplementary Budget, (Development of Technologies for Grasping and Analyzing Properties of Fuel Debris)

Nakayoshi, Akira; Mitsugi, Takeshi; Sasaki, Shinji; Maeda, Koji

JAEA-Data/Code 2021-011, 279 Pages, 2022/03

JAEA-Data-Code-2021-011.pdf:37.76MB

At the TEPCO's Fukushima Daiichi Nuclear Power Station (1F), an investigation inside the reactors has been carried out, and R&D has been made on methods of fuel debris retrieval and storage after retrieval. In order to carry out the decommissioning work safely and steadily, understanding characteristics of fuel debris in the reactors is required. Therefore, in the development of technologies for grasping and analyzing properties of fuel debris project, the characteristics of simulated fuel debris, such as hardness, drying behavior, etc., of fuel debris for design of removal and storage, have been investigated and estimated, and provided to other projects conducting the decommissioning work. As part of this project, U-containing particles in samples (e.g., deposit on the investigation equipment, sediment in the reactors, etc.) obtained during the internal investigation of the reactors of 1F units 1 to 3 were analyzed. This report summarized the results of FE-SEM/WDX, FE-SEM/EDS, STEM/EDS, and TEM analysis, which were extracted from all analysis results obtained, as a database for the evaluation of the generation mechanism of U-containing particles. The analyses were performed at the JAEA Oarai Research and Development Institute and Nippon Nuclear Fuel Development Co., LTD.

Journal Articles

The Chemistry of thorium, plutonium and MA

Sato, Nobuaki*; Kirishima, Akira*; Watanabe, Masayuki; Sasaki, Takayuki*; Uehara, Akihiro*; Takeda, Shino*; Kitatsuji, Yoshihiro; Otobe, Haruyoshi; Kobayashi, Taishi*

The Chemistry of Thorium, Plutonium and MA, 254 Pages, 2022/03

The chemistry of nuclear materials such as Thorium (Part 1) and Plutonium (Part 2) was described in relation from the fundamentals on solid chemistry and solution chemistry to the practicals on the experiment and evaluation method in detail. Minor actinides such as Neptunium, Americium, Curium and Protoactinium, was introduced the basics on the solid and solution chemistry.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-020, 138 Pages, 2021/11

JAEA-Technology-2021-020.pdf:17.11MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Tsuruga and Mihama nuclear power station, research reactors in Kindai University Atomic Energy Research Institute and Institute for Integrated Radiation and Nuclear Science, Kyoto University. In addition, examination's progress aimed at introduction of airborne radiation monitoring via unmanned plane during nuclear disaster and the technical issues are summarized in this report.

Journal Articles

Summary results of subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))"

Koyama, Shinichi; Nakagiri, Toshio; Osaka, Masahiko; Yoshida, Hiroyuki; Kurata, Masaki; Ikeuchi, Hirotomo; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Takano, Masahide; et al.

Hairo, Osensui Taisaku jigyo jimukyoku Homu Peji (Internet), 144 Pages, 2021/08

JAEA performed the subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))" in 2020JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning and Contaminated Water Management.

Journal Articles

Distribution of studtite and metastudtite generated on the surface of U$$_{3}$$O$$_{8}$$; Application of Raman imaging technique to uranium compound

Kusaka, Ryoji; Kumagai, Yuta; Yomogida, Takumi; Takano, Masahide; Watanabe, Masayuki; Sasaki, Takayuki*; Akiyama, Daisuke*; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Science and Technology, 58(6), p.629 - 634, 2021/06

 Times Cited Count:8 Percentile:61.40(Nuclear Science & Technology)

Journal Articles

Radioactivity and radionuclides in deciduous teeth formed before the Fukushima-Daiichi Nuclear Power Plant accident

Takahashi, Atsushi*; Chiba, Mirei*; Tanahara, Akira*; Aida, Jun*; Shimizu, Yoshinaka*; Suzuki, Toshihiko*; Murakami, Shinobu*; Koarai, Kazuma; Ono, Takumi*; Oka, Toshitaka; et al.

Scientific Reports (Internet), 11(1), p.10355_1 - 10355_11, 2021/05

 Times Cited Count:9 Percentile:41.24(Multidisciplinary Sciences)

355 (Records 1-20 displayed on this page)