Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; et al.
JAEA-Technology 2024-022, 170 Pages, 2025/03
On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake caused a tsunami that led to the Fukushima Daiichi Nuclear Power Station accident, releasing radioactive material into the environment. Since then, Aerial Radiation Monitoring (ARM) using manned helicopters has been employed to measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) utilizes this technology for emergency monitoring during nuclear facility accidents, aiming to provide prompt results by pre-arranging information on background radiation, topography, and control airspaces around nuclear power plants nationwide. In fiscal year 2023, the commissioned project included conducting ARM around the Sendai Nuclear Power Station and preparing related information. To enhance effectiveness during emergencies, ARM and the first domestic training flight of Unmanned Aerial Vehicles (UAVs) were conducted during the FY2023 Nuclear Energy Disaster Prevention Drill. Furthermore, UAVs radiation monitoring technology was advanced by selecting UAVs and investigating their performance. This report summarizes the results and technical issues identified providing insights to improve emergency preparedness.
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Nagakubo, Azusa; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; et al.
JAEA-Technology 2024-021, 232 Pages, 2025/03
The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011, caused a tsunami that led to the TEPCO's Fukushima Daiichi Nuclear Power Station (FDNPS) accident, releasing a large amount of radioactive material into the surrounding environment. Since the accident, Aerial Radiation Monitoring (ARM) has been used to quickly and widely measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) has continuously conducted ARM around FDNPS using manned and unmanned helicopters. This report summarizes the monitoring results for fiscal year 2023, evaluates changes in dose rate from past results, and discusses the factors contributing to these changes. Additionally, an analysis considering terrain undulation was conducted to improve accuracy for converting ARM data into dose rate. Furthermore, a method to discriminate airborne radon progeny was applied for ARM results to evaluate its impact. Moreover, to perform wide-area monitoring more efficiently, we advanced the development of unmanned airplane monitoring technology.
Abe, Yosuke; Tsuru, Tomohito; Fujita, Yohei*; Otomo, Masahide*; Sasaki, Taisuke*; Yamashita, Shinichiro; Okubo, Nariaki; Ukai, Shigeharu
Journal of Nuclear Materials, 606, p.155606_1 - 155606_12, 2025/02
Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)We investigated the effect of Al addition on the formation of phase in Fe-Cr-Al model alloys by thermal aging. The Vickers hardness tests and a machine learning model indicate that the formation of the
phase is promoted by low Al additions and suppressed by high Al additions. First-principles calculations, which indicate that Cr-Al-vacancy pairs are more stable than Cr-Cr pairs and that including Al atoms during
phase nucleation may be energetically advantageous. On the other hand, the formation of Al-Al pairs was very unstable. The formation of Al-Al pairs near the interface can be avoided when the amount of Al addition is small. However, it is inevitable when the amount of Al addition is significant, leading to the instability of the
phase.
Abe, Yosuke; Sasaki, Taisuke*; Yamashita, Shinichiro; Okubo, Nariaki; Ukai, Shigeharu
Journal of Nuclear Materials, 600, p.155271_1 - 155271_12, 2024/11
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)To investigate the formation behavior of Cr-rich precipitates (CrRP) in Fe-Cr-Al (ODS) alloys being developed as accident tolerant fuel cladding for light water reactors, 14 Fe-Cr-Al alloys with systematically varied Cr and Al compositions were irradiated with 10.5 MeV Fe at
C at three damage levels. A three-dimensional atom probe analysis showed that the CrRP number density, volume fraction, and Cr concentration increase with increasing Cr composition, decreasing Al composition, and decreasing dose rate. The result of the multiple regression analysis on CrRP volume fractions indicates that in addition to the primary effects of these variables, there are several important interactions. It was also highlighted that to understand the dose rate effect on the CrRP formation behavior under neutron irradiation, it is useful to examine the irradiation time dependence, including the effective use of thermal aging data as a limit to the zero dose rate.
Sakurai, Hirohisa*; Kurebayashi, Yutaka*; Suzuki, Soichiro*; Horiuchi, Kazuho*; Takahashi, Yui*; Doshita, Norihiro*; Kikuchi, Satoshi*; Tokanai, Fuyuki*; Iwata, Naoyoshi*; Tajima, Yasushi*; et al.
Physical Review D, 109(10), p.102005_1 - 102005_18, 2024/05
Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)Secular variations of galactic cosmic rays (GCRs) are inseparably associated with the galactic activities and should reflect the environments of the local galactic magnetic field, interstellar clouds, and nearby supernova remnants. The high-energy muons produced in the atmosphere by high-energy GCRs can penetrate deep underground and generate radioisotopes in the rock. As long lived radionuclides such as Be and
Al have been accumulating in these rocks, concentrations of
Be and
Al can be used to estimate the long-term variations in high-energy muon yields, corresponding to those in the high-energy GCRs over a few million years. This study measured the production cross sections for muon induced
Be and
Al by irradiating positive muons with the momentum of 160 GeV/c on the synthetic silica plates and the granite core at the COMPASS experiment line in CERN SPS. In addition, it the contributions of the direct muon spallation reaction and the nuclear reactions by muon-induced particles on the production of long lived radionuclides in the rocks were clarified.
Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.
JAEA-Technology 2023-026, 161 Pages, 2024/03
By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been utilized as a method to quickly and extensively measure radiation distribution surrounding FDNPS. In order to utilize ARM and to promptly provide the results during a nuclear emergency, information on background radiation levels, topographical features, and controlled airspace surrounding nationwide nuclear facilities have been prepared in advance. In the fiscal year 2022, we conducted ARM around the Mihama Nuclear Power Station of Kansai Electric Power Company (KEPCO), the Tsuruga Power Station of Japan Atomic Power Company (JAPC), and the Ikata Power Station of Shikoku Electric Power Company (YONDEN), and prepared information on background radiation doses and controlled airspace. In addition, we have developed an aerial radiation detection system via unmanned airplane, which is expected to be an alternative to ARM, during a nuclear emergency. This report summarizes the results and technical issues identified.
Koyama, Shinichi; Ikeuchi, Hirotomo; Mitsugi, Takeshi; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Tsai, T.-H.; Takano, Masahide; Fukaya, Hiroyuki; Nakamura, Satoshi; et al.
Hairo, Osensui, Shorisui Taisaku Jigyo Jimukyoku Homu Peji (Internet), 216 Pages, 2023/11
In FY 2021 and 2022, JAEA perfomed the subsidy program for "the Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy, Thermal Bahavior Estimation, and Simplified Analysis of Fuel Debris)" started in FY 2021. This presentation material summarized the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning, Contaminated Water and Treated Water Management.
Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Hokama, Tomonori; et al.
JAEA-Technology 2022-028, 127 Pages, 2023/02
A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report has summarized the knowledge noted above achieved by the aerial radiation monitoring around Ohi and Takahama nuclear power stations. In addition, the examination's progress aimed at introducing airborne radiation monitoring via an unmanned plane during a nuclear disaster and the technical issues are summarized in this report.
Fukaya, Yuji; Okita, Shoichiro; Sasaki, Koei; Ueta, Shohei; Goto, Minoru; Ohashi, Hirofumi; Yan, X.
Nuclear Engineering and Design, 399, p.112033_1 - 112033_9, 2022/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Kernel migration of TRi-structural ISOtropic (TRISO) fuel for High Temperature Gas-cooled Reactor (HTGR) has been analyzed to investigate the potential dominating effects. Kernel migration is a major fuel failure mode and dominant to determine the lifetime of the fuel for High Temperature engineering Test Reactor (HTTR). However, this study shows that the result and reliability depend on the evaluation method. The evaluation method used in this study takes into account of actual distribution of Coated Fuel Particles (CFPs) and the resulting heterogeneous fuel temperature calculation with such distribution. The result shows that the Kernel Migration Rate (KMR) is predicted to be about 10% less compared with the most conservative evaluation.
Kusaka, Shotaro*; Sasaki, Taisuke*; Sumida, Kazuki; Ichinokura, Satoru*; Ideta, Shinichiro*; Tanaka, Kiyohisa*; Hono, Kazuhiro*; Hirahara, Toru*
Applied Physics Letters, 120(17), p.173102_1 - 173102_5, 2022/04
Times Cited Count:4 Percentile:33.23(Physics, Applied)Koyama, Shinichi; Nakagiri, Toshio; Osaka, Masahiko; Yoshida, Hiroyuki; Kurata, Masaki; Ikeuchi, Hirotomo; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Takano, Masahide; et al.
Hairo, Osensui Taisaku jigyo jimukyoku Homu Peji (Internet), 144 Pages, 2021/08
JAEA performed the subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))" in 2020JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning and Contaminated Water Management.
Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.
Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08
Times Cited Count:19 Percentile:83.44(Optics)Sasaki, Koei; Miura, Shuichiro*; Fukumoto, Kenichi*; Goto, Minoru; Ohashi, Hirofumi
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 6 Pages, 2021/08
Cs-Bi and Cs-Sb absorbed graphite samples (Cs-Bi/graphite and Cs-Sb/graphite) were synthesized and their high temperature chemical stabilities were tested up to 1500C by TG and analyzed by TEM-EDS for the development of Cs trap material in high temperature gas-cooled reactor (HTGR) fuel particles. It was observed that Cs was stabilized by Sb but not by Bi in the specimens after the TG test. A rapid weight loss from 800 to 1000
C may be caused by evaporation of Cs (boiling point: 671
C) was seen in the TG result of both specimens. Precipitated Cs-Sb substance in the graphite matrix were not resolved even after the 1500
C heating. The chemical composition of the Cs-Sb was specified as Cs
Sb. The experimental results suggest that Sb have potential to be a Cs getter material in graphite matrix. Long term heating test should be performed to confirm adaptability of Sb for Cs trap material in HTGR fuel particles.
Hirahara, Toru*; Otrokov, M. M.*; Sasaki, Taisuke*; Sumida, Kazuki*; Tomohiro, Yuta*; Kusaka, Shotaro*; Okuyama, Yuma*; Ichinokura, Satoru*; Kobayashi, Masaki*; Takeda, Yukiharu; et al.
Nature Communications (Internet), 11, p.4821_1 - 4821_8, 2020/09
Times Cited Count:53 Percentile:90.85(Multidisciplinary Sciences)Tobita, Minoru*; Haraga, Tomoko; Sasaki, Takayuki*; Seki, Kotaro*; Omori, Hiroyuki*; Kochiyama, Mami; Shimomura, Yusuke; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2019-016, 72 Pages, 2020/02
In the future, radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 25 radionuclides (H,
C,
Cl,
Co,
Ni,
Sr,
Nb,
Mo,
Tc,
Ag,
Sn,
I,
Cs,
Eu,
Eu,
U,
U,
U,
Pu,
Pu,
Pu,
Pu,
Am,
Am,
Cm) which were obtained from radiochemical analysis of those samples.
Abe, Mitsushi*; Bae, S.*; Beer, G.*; Bunce, G.*; Choi, H.*; Choi, S.*; Chung, M.*; da Silva, W.*; Eidelman, S.*; Finger, M.*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2019(5), p.053C02_1 - 053C02_22, 2019/05
Times Cited Count:161 Percentile:99.30(Physics, Multidisciplinary)This paper introduces a new approach to measure the muon magnetic moment anomaly and the muon electric dipole moment (EDM)
at the J-PARC muon facility. The goal of our experiment is to measure
and
using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon g-2 experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for
is a statistical uncertainty of 450 parts per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of
e
cm.
Sasaki, Hirokazu*; Nishikubo, Hideo*; Nishida, Shinsuke*; Yamazaki, Satoshi*; Nakasaki, Ryusuke*; Isomatsu, Takemi*; Minato, Ryuichiro*; Kinugawa, Kohei*; Imamura, Akihiro*; Otomo, Shinya*; et al.
Furukawa Denko Jiho, (138), p.2 - 10, 2019/02
no abstracts in English
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:16 Percentile:98.61(Quantum Science & Technology)Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:4 Percentile:87.91(Physics, Atomic, Molecular & Chemical)Ochi, Kotaro; Sasaki, Miyuki; Ishida, Mutsushi*; Hamamoto, Shoichiro*; Nishimura, Taku*; Sanada, Yukihisa
International Journal of Environmental Research and Public Health, 14(8), p.926_1 - 926_14, 2017/08
Times Cited Count:5 Percentile:24.21(Environmental Sciences)After the Fukushima Daiichi Nuclear Power Plant accident, the vertical distribution of radiocesium in soil has been investigated to better understand the behavior of radiocesium in the environment. The typical method used for measuring the vertical distribution of radiocesium is troublesome because it requires collection and measurement of the activity of soil samples. In this study, we established a method of estimating the vertical distribution of radiocesium by focusing on the characteristics of -ray spectra obtained via aerial radiation monitoring using an unmanned helicopter. In this method, the change in the ratio of direct
rays to scattered
rays at various depths in the soil was utilized to quantify the vertical distribution of radiocesium. The results show a positive correlation between the abovementioned and the actual vertical distributions of radiocesium measured in the soil samples.