Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kokubun, Yuji; Hosomi, Kenji; Nagaoka, Mika; Seya, Natsumi; Inoue, Kazumi; Koike, Yuko; Uchiyama, Rei; Sasaki, Kazuki; Maehara, Yushi; Matsuo, Kazuki; et al.
JAEA-Review 2024-054, 168 Pages, 2025/03
The Nuclear Fuel Cycle Engineering Laboratories conducts environmental radiation monitoring around the reprocessing plant in accordance with the "Safety Regulations for Reprocessing Plant of JAEA, Part IV: Environmental Monitoring". This report summarizes the results of environmental radiation monitoring conducted during the period from April 2023 to March 2024 and the results of dose calculations for the surrounding public due to the release of radioactive materials from the plant into the atmosphere and ocean. In the results of the above environmental radiation monitoring, several items were affected by radioactive materials emitted from the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, Incorporated (changed to Tokyo Electric Power Holdings, Inc. on April 1, 2016), which occurred in March 2011. In addition, environmental monitoring plan, analysis and measurement methods, monitoring data and their chronological change, meteorological data after statistical processing, status of radioactive waste release and evaluation results of the data over the normal range are included as appendices.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.
Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08
Times Cited Count:19 Percentile:83.44(Optics)Takahashi, Atsushi*; Chiba, Mirei*; Tanahara, Akira*; Aida, Jun*; Shimizu, Yoshinaka*; Suzuki, Toshihiko*; Murakami, Shinobu*; Koarai, Kazuma; Ono, Takumi*; Oka, Toshitaka; et al.
Scientific Reports (Internet), 11(1), p.10355_1 - 10355_11, 2021/05
Times Cited Count:9 Percentile:39.53(Multidisciplinary Sciences)Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.
Tsuji, Tomoyuki; Sugitsue, Noritake; Sato, Fuminori; Matsushima, Ryotatsu; Kataoka, Shoji; Okada, Shota; Sasaki, Toshiki; Inoue, Junya
Nihon Genshiryoku Gakkai-Shi ATOMO, 62(11), p.658 - 663, 2020/11
no abstracts in English
Miwa, Kazuji; Terasaka, Yuta; Ochi, Kotaro; Futemma, Akira; Sasaki, Miyuki; Hirouchi, Jun
Nihon Genshiryoku Gakkai-Shi ATOMO, 61(9), p.687 - 691, 2019/09
This report summarizes the contents of the session of the Health Physics and Environment Science Division, which was held in Atomic Energy Society of Japan 2019 Spring Meeting. In this session, six students and young researchers who engaged in the field of nuclear energy and radiation gave a lecture about health physics and environmental science research through their expertise. After the all presentations end, we took discussion time about the issues and future development in this field with all attendees. In this report, we summarized each lecture outline and discussion contents.
Abe, Mitsushi*; Bae, S.*; Beer, G.*; Bunce, G.*; Choi, H.*; Choi, S.*; Chung, M.*; da Silva, W.*; Eidelman, S.*; Finger, M.*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2019(5), p.053C02_1 - 053C02_22, 2019/05
Times Cited Count:161 Percentile:99.30(Physics, Multidisciplinary)This paper introduces a new approach to measure the muon magnetic moment anomaly and the muon electric dipole moment (EDM)
at the J-PARC muon facility. The goal of our experiment is to measure
and
using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon g-2 experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for
is a statistical uncertainty of 450 parts per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of
e
cm.
Sasaki, Hirokazu*; Nishikubo, Hideo*; Nishida, Shinsuke*; Yamazaki, Satoshi*; Nakasaki, Ryusuke*; Isomatsu, Takemi*; Minato, Ryuichiro*; Kinugawa, Kohei*; Imamura, Akihiro*; Otomo, Shinya*; et al.
Furukawa Denko Jiho, (138), p.2 - 10, 2019/02
no abstracts in English
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:16 Percentile:98.61(Quantum Science & Technology)Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:89.35(Physics, Atomic, Molecular & Chemical)Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika*; Yamada, Tsutomu*; et al.
JAEA-Research 2016-016, 131 Pages, 2016/10
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report.
Okuda, Eiji; Sasaki, Jun; Suzuki, Nobuhiro; Takamatsu, Misao; Nagai, Akinori
JAEA-Technology 2016-017, 20 Pages, 2016/07
In-Vessel Observation (IVO) techniques for Sodium Cooled Fast Reactors (SFRs) in service are important for confirming their safety and integrity. Since IVO equipment for an SFR has to be designed to tolerate the severe conditions (high temperature, high radiation dose and limited access route), fiberscopes used to be used in previous IVO for SFRs. However, in order to attain an IVO with higher quality and resolution, IVO using a radiation resistant camera was conducted in the fast experimental reactor Joyo and obtained some results. The demonstration results provided valuable insights for use in further improving and verifying IVO techniques in SFRs.
Takamatsu, Misao; Kawahara, Hirotaka; Ito, Hiromichi; Ushiki, Hiroshi; Suzuki, Nobuhiro; Sasaki, Jun; Ota, Katsu; Okuda, Eiji; Kobayashi, Tetsuhiko; Nagai, Akinori; et al.
Nihon Genshiryoku Gakkai Wabun Rombunshi, 15(1), p.32 - 42, 2016/03
In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of "MARICO-2" (material testing rig with temperature control) had been broken and bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). This paper describes the results of the in-vessel repair techniques for UCS replacement, which are developed in Joyo. UCS replacement was successfully completed in 2014. In-vessel repair techniques for sodium cooled fast reactors (SFRs) are important in confirming its safety and integrity. In order to secure the reliability of these techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. The experience and knowledge gained in UCS replacement provides valuable insights into further improvements for In-vessel repair techniques in SFRs.
Okuda, Eiji; Sasaki, Jun; Suzuki, Nobuhiro; Takamatsu, Misao; Nagai, Akinori
JAEA-Technology 2015-005, 36 Pages, 2015/03
In-Vessel Observations (IVO) techniques for Sodium cooled Fast Reactors (SFRs) are important in confirming its safety and integrity. In order to secure the reliability of IVO techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. The IVO equipment for the Upper Core Structure (UCS) fitting area was specifically developed in the experimental fast reactor "Joyo". And the IVO was successfully completed as shown below. (1) Improvement of picture quality and resolution. The IVO of UCS fitting area with the gap of 5mm in minimum was achieved using the IVO equipment with video-scope under the actual reactor environment. The picture quality and resolution could be improved comparing with the radiation resistant fiberscope which was used in past IVO. (2) Prevention of video-scope hypofunction by high temperature / radiation dose. Since video-scope is inferior in thermal and radiation resistance, the IVO equipment was designed to be able to withdraw and insert video-scopes with cooling gas. This measure could achieve the observation in short radiation time with available temperature under the actual reactor environment. The IVO equipment for UCS fitting area provided useful information on UCS replacement. In addition, the experience provided valuable insights into further improvements for IVO techniques in SFRs.
Ishii, Kenji; Fujita, Masaki*; Sasaki, Takanori*; Minola, M.*; Dellea, G.*; Mazzoli, C.*; Kummer, K.*; Ghiringhelli, G.*; Braicovich, L.*; Toyama, Takami*; et al.
Nature Communications (Internet), 5, p.3714_1 - 3714_8, 2014/04
Times Cited Count:98 Percentile:94.33(Multidisciplinary Sciences)Shinohara, Masanori; Motegi, Toshihiro; Saito, Kenji; Haga, Hiroyuki; Sasaki, Shinji; Katsuyama, Kozo; Takada, Kiyoshi*; Higashimura, Keisuke*; Fujii, Junichi*; Ukai, Takayuki*; et al.
JAEA-Technology 2012-032, 29 Pages, 2012/11
An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the past developed life is one of the issues to develop the technology basis of HTGR. Then, two experimental investigations were carried out to reveal the cause of the malfunction by specifying the damaged part causing the event in the WRM. One is an experiment using a mock-up sample test which strength degradation on assembly accuracy and heat cycle to specify the damaged part in the WRM. The other is a destructive test in FMF to specify the damaged part in the WRM. This report summarized the results of the destructive test and the experimental investigation using the mock-up to reveal the cause of malfunction of WRM.
Sasaki, Satoru; Suzuki, Soju; Nakano, Junichi; Takamatsu, Misao; Matoba, Ichiyo*; Nakano, Makoto*; Oketani, Koichiro*; Natsume, Tomohiro*
Genshiryoku eye, 57(2), p.66 - 75, 2011/02
no abstracts in English
Oku, Takayuki; Kikuchi, Takayuki*; Shinohara, Takenao; Suzuki, Junichi; Ishii, Yuya*; Takeda, Masayasu; Kakurai, Kazuhisa; Sasaki, Yuji*; Kishimoto, Mikio*; Yokoyama, Makoto*; et al.
Physica B; Condensed Matter, 404(17), p.2575 - 2577, 2009/09
Times Cited Count:8 Percentile:35.37(Physics, Condensed Matter)The microscopic determination of the magnetic moment in the FeN
nano-particles by means of polarized neutron diffraction experiment is reported. These particles had been developed by industrial researchers for use in high-density magnetic tape, and the particles were coated with proprietary nonmagnetic material. Polarized neutrons were used to measure the magnetic-nuclear interference contributions and, given the known crystal structure, the detailed analysis allowed to determine the magnetic moments on the different Fe-sites. The future perspectives of this technique using the high-intensity powder instrument in combination with pulsed magnetic high-field at J-PARC including the possible industrial application is discussed.
Sasaki, Tomoyuki*; Yokoo, Tetsuya*; Katano, Susumu; Akimitsu, Jun*
Journal of the Physical Society of Japan, 74(1), p.267 - 270, 2005/01
Times Cited Count:2 Percentile:19.41(Physics, Multidisciplinary)no abstracts in English