Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ogawa, Tatsuhiko; Hirata, Yuho; Matsuya, Yusuke; Kai, Takeshi; Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Furuta, Takuya; Abe, Shinichiro; Matsuda, Norihiro; et al.
EPJ Nuclear Sciences & Technologies (Internet), 10, p.13_1 - 13_8, 2024/11
The latest updates on PHITS, a versatile radiation transport code, focusing specifically on track-structure models are presented. Track structure calculations are methods used to simulate the movement of charged particles while explicitly considering each atomic reaction. Initially developed for radiation biology, these calculation methods aimed to analyze the radiation-induced damage to DNA and chromosomes. Several track-structure calculation models, including PHITS-ETS, PHITS-ETS for Si, PHITS-KURBUC, ETSART, and ITSART, have been developed and implemented to PHITS. These models allow users to study the behavior of various particles at the nano-scale across a wide range of materials. Furthermore, potential applications of track-structure calculations have also been proposed so far. This collection of track-structure calculation models, which encompasses diverse conditions, opens up new avenues for research in the field of radiation effects.
Ueno, Akio*; Sato, Kiyoshi*; Tamamura, Shuji*; Murakami, Takuma*; Inomata, Hidenori*; Tamazawa, Satoshi*; Amano, Yuki; Miyakawa, Kazuya; Naganuma, Takeshi*; Igarashi, Toshifumi*
Microbiology Resource Announcements (Internet), 13(11), p.e00108-24_1 - e00108-24_4, 2024/11
Morita, Keisuke; Aoki, Takeshi; Shimizu, Atsushi; Sato, Hiroyuki
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 6 Pages, 2024/11
Matsuya, Yusuke; Kai, Takeshi; Sato, Tatsuhiko
Shototsu, 21(3), p.R008_1 - R008_8, 2024/11
Particle and Heavy Ion Transport code System PHITS is a Monte Carlo code that enables the simulation of the behavior of radiation using a computer. Since 2018, a track-structure mode has been developed that allows the simulation of each atomic interaction in liquid water, which is a main component of living organisms. This development has made it possible to perform high-spatial resolution radiation track-structure analysis on the DNA scale. Meanwhile, based on the spatial information of atomic interactions calculated in the track-structure mode, we have also succeeded in developing an analysis code that enables the estimate of the various types of DNA damage yields efficiently and with high accuracy. In this review, we introduce an overview of the track-structure mode and DNA damage estimation model implemented in the latest version of PHITS, and show examples of applications of PHITS in the field of life sciences.
Aoki, Takeshi; Hasegawa, Takeshi; Kurahayashi, Kaoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Sakaba, Nariaki
Proceedings of 11th International Topical Meeting on High Temperature Reactor Technology (HTR 2024), 6 Pages, 2024/10
Japan Atomic Energy Agency (JAEA) is planning to perform a test named HTTR heat application test coupling HTTR (High temperature engineering test reactor) and a hydrogen production plant. The present study reports results of the safety design and safety analysis for HTTR heat application test facility. As a safety design, safety classification of structures, systems, and components was defined in the test facility based on their safety functions. As a preliminary safety analysis, a thermal-hydraulic analysis was performed with RELAP5 code. The safety analysis revealed that newly identified events for HTTR heat application test facility except for the rupture of heat transfer tube of steam generator was enveloped by the licensing basis events in conventional HTTR. The preliminary analysis proved that the safety criteria is satisfied in the candidate of licensing basis event.
Ichikawa, Yudai; Fujita, Manami; Hasegawa, Shoichi; Imai, Kenichi*; Nanamura, Takuya; Naruki, Megumi; Sato, Susumu; Sako, Hiroyuki; Tamura, Hirokazu; Tanida, Kiyoshi; et al.
Progress of Theoretical and Experimental Physics (Internet), 2024(9), p.091D01_1 - 091D01_13, 2024/09
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Sato, Yuki; Kakuto, Takeshi*; Tanaka, Takayuki*; Shimano, Hiroyuki*; Morohashi, Yuko; Hatakeyama, Tomoyoshi*; Nakajima, Junsaku; Ishiyama, Masahiro
Nuclear Instruments and Methods in Physics Research A, 1063, p.169300_1 - 169300_7, 2024/06
Times Cited Count:1 Percentile:75.38(Instruments & Instrumentation)Mizuno, Rurie*; Niikura, Megumi*; Saito, Takeshi*; Matsuzaki, Teiichiro*; Sakurai, Hiroyoshi*; Amato, A.*; Asari, Shunsuke*; Biswas, S.*; Chiu, I.-H.; Gianluca, J.*; et al.
Nuclear Instruments and Methods in Physics Research A, 1060, p.169029_1 - 169029_14, 2024/03
Times Cited Count:1 Percentile:34.39(Instruments & Instrumentation)Sekikawa, Takuya; Matsuya, Yusuke; Hwang, B.*; Ishizaka, Masato*; Kawai, Hiroyuki*; Ono, Yoshiaki*; Sato, Tatsuhiko; Kai, Takeshi
Nuclear Instruments and Methods in Physics Research B, 548, p.165231_1 - 165231_6, 2024/03
Times Cited Count:1 Percentile:75.38(Instruments & Instrumentation)One of the main causes of radiation effects on the human body is thought to be damage to DNA, which carries genetic information. However, it is not fully understood what kind of molecular structural changes DNA undergoes upon radiation damage. Since it has been reported that various types of DNA damage are formed when DNA is irradiated, our group has investigated the relationship between DNA damage and various patterns of radiation-induced ionization induced by radiation. Although we have so far analyzed DNA damage in a simple system using a rigid body model of DNA, more detailed calculations are required to analyze the molecular structural changes in DNA, which are considered to be important in considering the effects on the human body. In this study, we attempted to clarify the molecular conformational changes of DNA using OpenMX, a first-principles calculation software that can discuss electronic states based on molecular structures. Specifically, we calculated the most stable structure, band dispersion, and wave function of DNA under the assumption that one and two electrons are ionized by various radiation. In the presentation, we will discuss the relationship between the energy dependence of each incident radiation type and the molecular conformational change of DNA. In addition, the radiation-induced changes in the basic physical properties of DNA (corresponding to the initial stage of DNA damage) will be discussed from the viewpoints of both radiation physics and solid state physics.
Hirata, Yuho; Kai, Takeshi; Ogawa, Tatsuhiko; Matsuya, Yusuke; Sato, Tatsuhiko
Nuclear Instruments and Methods in Physics Research B, 547, p.165183_1 - 165183_7, 2024/02
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)The luminescence efficiency of the phosphors for swift ions is known to decrease because of the quenching effects. To obtain the precise dose distributions using phosphor detectors, understanding the mechanisms of quenching effects is mandatory. Here, we developed a new model for estimating the luminescence intensity of phosphors based on the track-structure modes for arbitrary materials implemented in PHITS. The developed model enabled the simulation of the quenching effects of the BaFBr detector and was verified by comparing the results to the corresponding measured data. The present model is expected to contribute to developing phosphor detectors worldwide.
Matsuya, Yusuke; Yoshii, Yuji*; Kusumoto, Tamon*; Akamatsu, Ken*; Hirata, Yuho; Sato, Tatsuhiko; Kai, Takeshi
Physics in Medicine & Biology, 69(3), p.035005_1 - 035005_12, 2024/02
Times Cited Count:1 Percentile:70.95(Engineering, Biomedical)Time-dependent yields of chemical products resulted in water radiolysis play a great role in evaluating DNA damage response after exposure to ionizing radiation. Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo simulation code for radiation transport, which allows to determine several atomic interactions such as ionizations and electronic excitations as physical stage. However, a chemical code for simulating products of water radiolysis does not exist in the PHITS package. Here, we developed a chemical simulation code dedicated for the PHITS code, hereafter called PHITS-Chem code, which enables calculating G values of water radiolysis species (OH radical, e, H
, H
O
etc) by electron beams. The estimated G values during 1
s are in agreement with the experimental ones and other simulations. This PHITS-Chem code enables simulating the dynamics in the presence of OH radical scavenger, and is useful for evaluating contributions of direct and indirect effects on DNA damage induction. This code will be included and be available in the future version of PHITS.
Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.
Journal of Nuclear Science and Technology, 61(1), p.127 - 135, 2024/01
Times Cited Count:80 Percentile:99.96(Nuclear Science & Technology)The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.31, was recently developed and released to the public. In the new version, the compatibility with high-energy nuclear data libraries and the algorithm of the track-structure modes have been improved. In this paper, we summarize the upgraded features of PHITS3.31 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.
Watanabe, So; Takahatake, Yoko; Ogi, Hiromichi*; Osugi, Takeshi; Taniguchi, Takumi; Sato, Junya; Arai, Tsuyoshi*; Kajinami, Akihiko*
Journal of Nuclear Materials, 585, p.154610_1 - 154610_6, 2023/11
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Yoshimura, Nobuyuki*; Toyama, Takeshi*; Shobuda, Yoshihiro; Nakamura, Takeshi*; Omi, Kazuhito*; Kobayashi, Aine*; Okada, Masashi*; Sato, Yoichi*; Nakaya, Tsuyoshi*
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.260 - 264, 2023/11
The J-PARC main ring (MR) will be increased to 1.3 MW. To cope with the increase in beam intensity, the intra-bunch feedback system (IBFB) needs to be upgraded to handle higher frequencies up to about 200 MHz. To evaluate the performance and understand the optimal parameters after this upgrade, we are developing a particle tracking simulation that includes the necessary components. The recoherence period induced by chromaticity between tracking simulations and experiments are compared and it cannot be discribed by the simple simulations, and we investigate what mechanisms explain this result. The shift of synchrotron tune caused by longitudinal wakes using tracking simulations are calculated and it find that introducing the effect of longitudinal wakes only does not explain the recoherence period in the experimental results.
Hirata, Yuho; Kai, Takeshi; Ogawa, Tatsuhiko; Matsuya, Yusuke*; Sato, Tatsuhiko
Japanese Journal of Applied Physics, 62(10), p.106001_1 - 106001_6, 2023/10
Times Cited Count:4 Percentile:60.72(Physics, Applied)Optimization of semiconductor detector design requires theoretical analysis of the process of radiation conversion to carriers (excited electrons) in semiconductor materials. We, therefore, developed an electron track-structure code that can trace an incident electron trajectory down to a few eV and simulate many excited electron productions in semiconductors, named ETSART, and implemented it into PHITS. The accuracy of ETSART was validated by comparing calculated electron ranges in semiconductor materials with the corresponding data recommended in ICRU Report 37 and obtained from another simulation code. The average energy required to produce a single excited electron (epsilon value) is an important value that describes the characteristics of semiconductor detectors. Using ETSART, we computed the epsilon values in various semiconductors and found that the calculated epsilon values cannot be fitted well with a linear model of the band-gap energy. ETSART is expected to be useful for initial and mechanistic evaluations of electron-hole generation in undiscovered materials.
Ishii, Katsunori; Morita, Keisuke; Noguchi, Hiroki; Aoki, Takeshi; Mizuta, Naoki; Hasegawa, Takeshi; Nagatsuka, Kentaro; Nomoto, Yasunobu; Shimizu, Atsushi; Iigaki, Kazuhiko; et al.
Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2023/09
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:21 Percentile:95.78(Multidisciplinary Sciences)no abstracts in English
Sato, Tatsuhiko; Matsuya, Yusuke*; Ogawa, Tatsuhiko; Kai, Takeshi; Hirata, Yuho; Tsuda, Shuichi; Parisi, A.*
Physics in Medicine & Biology, 68(15), p.155005_1 - 155005_15, 2023/07
Times Cited Count:7 Percentile:88.76(Engineering, Biomedical)In this study, we improved the microdosimetric function implemented in PHITS using the latest track-structure simulation codes. The improved function is capable of calculating the probability densities of not only the conventional microdosimetric quantities such as lineal energy but also the numbers of ionization events occurred in a target site, the so-called ionization cluster size distribution, for arbitrary site diameters from 3 nm to 1 um. As a new application of the improved function, we calculated the relative biological effectiveness of the single-strand break and double-strand break yields for proton irradiations using the updated PHITS coupled with the simplified DNA damage estimation model, and confirmed its equivalence in accuracy and its superiority in computational time compared to our previously proposed method based on the track-structure simulation.
Yamashita, Takuya; Honda, Takeshi*; Mizokami, Masato*; Nozaki, Kenichiro*; Suzuki, Hiroyuki*; Pellegrini, M.*; Sakai, Takeshi*; Sato, Ikken; Mizokami, Shinya*
Nuclear Technology, 209(6), p.902 - 927, 2023/06
Times Cited Count:5 Percentile:87.90(Nuclear Science & Technology)Ishii, Katsunori; Aoki, Takeshi; Isaka, Kazuyoshi; Noguchi, Hiroki; Shimizu, Atsushi; Sato, Hiroyuki
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05