Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of the sintering solidification method for spent zeolite to long-term stabilization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2022-008, 116 Pages, 2022/06

JAEA-Review-2022-008.pdf:5.36MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the sintering solidification method for spent zeolite to long-term stabilization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a new sintering solidification method in which glass is added as a binder to spent zeolite which is adsorbed radionuclides such as Cs and the nuclides are immobilized by sintering them. In this project, the optimum conditions for sintering solidification and the basic performance of the sintered solidified body will be evaluated by cold tests, and they will be demonstrated by hot tests.

JAEA Reports

Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2020-049, 78 Pages, 2021/01

JAEA-Review-2020-049.pdf:5.85MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization" conducted in FY2019.

JAEA Reports

Development of the sintering solidification method for spent zeolite to long-term stabilization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2019-028, 71 Pages, 2020/03

JAEA-Review-2019-028.pdf:6.46MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization". The present study aims to develop the sintering solidification method for zeolites (spent zeolites) that adsorbs continuously generated radionuclides such as cesium. The sintering solidification method is able to stabilize adsorbed radionuclides such as cesium in zeolites by adding a glass as a binder to spent zeolite and sintered it. It is expected that the sintering solidification method is significantly reduce the volume of the solidified body compare with the glass solidification method and to form a stable solidified body equivalent to the calcination solidification method. In this project, we planned to select a glass suitable for the sintering solidification method and optimize the sintering temperature, etc. using non-radioactive nuclides (cold tests), and verify it by using radioactive nuclides (hot tests). In FY2018, we investigated the thermal properties of candidate glasses for binder and the effect of heating atmosphere on the sintering solidification method. Irradiated fuel for preparing simulated contaminated water containing radionuclides was selected and the condition of it was observed. In addition, we surveyed existing research results and latest research trends about solidification of zeolite, calcination solidification and so on.

3 (Records 1-3 displayed on this page)
  • 1