Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okamoto, Yoshihiro; Shiwaku, Hideaki; Shimamura, Keisuke*; Kobayashi, Hidekazu; Nagai, Takayuki; Inose, Takehiko*; Sato, Seiichi*; Hatakeyama, Kiyoshi*
Journal of Nuclear Materials, 570, p.153962_1 - 153962_13, 2022/11
Simulated nuclear waste glass samples containing phosphorus, which increase the solubility of molybdenum, were prepared and analyzed using synchrotron X-ray Absorption Fine Structure (XAFS) analysis for some constituent elements and Raman spectroscopic analysis of their complex structure. Changes in local structure and chemical state due to different phosphorus additions and waste loading rates were systematically studied. Consequently, no crystalline phase due to the molybdate compound was observed even at a maximum waste content of 30 wt% (corresponding to 1.87 mol% MoO). Oxidation proceeded when the waste-loading rate was increased, whereas the reduction proceeded when phosphorus was added. In some cases, the effects of oxidation and reduction were offset. The local structure around specific elements can be classified as follows; Zn that is affected mainly by the waste-loading rate, Ce that is affected by both the waste-loading rate and phosphorus addition, and Zr element that is not affected by either of them. From the comparison between the analytical results of Mo and other elements, it was considered that the added phosphorus exists as a free PO
structural unit and may deprive the alkali metal coordinated to the molybdate ion.
Asahi, Yoshimitsu; Shimamura, Keisuke*; Kobayashi, Hidekazu; Kodaka, Akira
JAEA-Technology 2021-026, 50 Pages, 2022/03
In Tokai Reprocessing Plant, the highly active liquid waste derived from a spent fuel reprocessing is vitrified with a Liquid-Fed Ceramic Melter (LFCM) embedded in Tokai Vitrification Facility (TVF). For an LFCM, the viscosity of melted glass is increased by the deposition of oxidation products of platinum group elements (PGE) and the PGE-containing glass tends to settle to the melter's bottom basin even after draining glass out. Removal of the PGE-containing glass is needed to avoid the Joule heating current from being affected by the glass, it requires time-consuming work to remove. For the early accomplishment of vitrifying the waste, Japan Atomic Energy Agency is planning to replace the current melter with the new one in which the amount of PGE sediments would be reduced. In the past design activities for the next melter, several kinds of shapes in regard to the furnace bottom and the strainer were drawn. Among these designs, the one in which the discharge ratio of PGE-containing glass would be as much as or greater than the current melter and which be able to perform similar operational sequences done in the current melter is selected here. Firstly, an operational sequence to produce one canister of vitrified waste is simulated for three melter designs with a furnace bottom shape, using 3D thermal-hydraulic calculations. The computed temperature distribution and its changes are compared among the candidate structures. After discussions about the technical and structural feasibilities of each design, a cone shape with a 45 slope was selected as the bottom shape of the next melter. Secondly, five strainer designs that fit the bottom shape above mentioned are drawn. For each design, the fluid drag and the discharge ratio of relatively high viscosity fluid resting near the bottom are estimated, using steady or unsteady CFD simulation. By draining silicone oil from acrylic furnace models, it was confirmed experimentally that there are no vortices
Nagai, Takayuki; Kobayashi, Hidekazu; Shimamura, Keisuke; Oyama, Koichi; Sasage, Kenichi; Okamoto, Yoshihiro; Shiwaku, Hideaki; Yamanaka, Keisuke*; Ota, Toshiaki*
JAEA-Research 2018-005, 72 Pages, 2018/09
Addition of radioactive waste to a borosilicate glass frit affects the local structures of glass-forming elements and waste elements in a waste glass produced in a vitrification process. In this study, simulated waste glass samples were prepared from borosilicate glass frit including phosphorus pentaoxide, and we investigated local structures of sodium (Na), boron (B), and waste elements in these glass samples by using synchrotron XAFS measurements in soft and hard X ray region.
Shimamura, Keisuke; Asahi, Yoshimitsu; Kobayashi, Hidekazu; Kodaka, Akira; Morikawa, Yo
no journal, ,
no abstracts in English
Asahi, Yoshimitsu; Shimamura, Keisuke; Kobayashi, Hidekazu; Kodaka, Akira; Morikawa, Yo
no journal, ,
no abstracts in English
Okamoto, Yoshihiro; Shiwaku, Hideaki; Shimamura, Keisuke; Oyama, Koichi; Kobayashi, Hidekazu; Nagai, Takayuki
no journal, ,
The chemical state and local structure of platinum group and lanthanide elements in simulated borosilicate glasses including phosphorus were investigated by using synchrotron radiation based X-ray absorption and imaging techniques. By adding phosphorus to the simulated borosilicate glass samples, ratios of trivalent cerium (Ce(III)/Ce(IV)) and metallic rhodium (Rh/RhO) increased. They suggests that oxidation state in the glass changed to reductive by adding phosphorus. On the other hand, XAFS spectra of some elements like Mn, Fe, Zn, Sr, Y and Zr did not changed by adding phosphorus and showed almost the same profiles in each element.