Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 199

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

Okumura, Yoshikazu; Gobin, R.*; Knaster, J.*; Heidinger, R.*; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; et al.

Review of Scientific Instruments, 87(2), p.02A739_1 - 02A739_3, 2016/02

 Times Cited Count:4 Percentile:51.49(Instruments & Instrumentation)

IFMIF is an accelerator based neutron facility having two set of linear accelerators each producing 125mA/CW deuterium ion beams (250mA in total) at 40MeV. The LIPAc (Linear IFMIF Prototype Accelerator) being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac, whose target is to demonstrate 125mA/CW deuterium ion beam acceleration up to 9MeV. The injector has been developed in CEA Saclay and already demonstrated 140mA/100keV deuterium beam. The injector was disassembled and delivered to the International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, and the commissioning has started after its reassembly 2014; the first beam production has been achieved in November 2014. Up to now, 100keV/120mA/CW hydrogen ion beam has been produced with a low beam emittance of 0.2 $$pi$$.mm.mrad (rms, normalized).

Journal Articles

High-power tests of RF input coupler for the IFMIF/EVEDA RFQ prototype linac

Maebara, Sunao; Sukegawa, Keiichi*; Tadano, Shuya*; Kasugai, Atsushi; Suzuki, Hiromitsu; Abe, Kazuhiko*; Oku, Ryuji*; Sugimoto, Masayoshi

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1140 - 1142, 2015/09

For the IFMIF/EVEDA accelerator prototype RFQ linac, the operation frequency of 175MHz was selected to accelerate a large current of 125mA. The driving RF power of 1.28MW by 8 RF input couplers has to be injected to the RFQ cavity for CW operation mode. For each RF input coupler, nominal RF power of 160kW and maximum transmitted RF power of 200kW are required. For this purpose, an RF input coupler with cooling functions was designed, based on a 6 1/8 inch co-axial waveguide, and the RF coupler was manufactured by way of trial. For the trial RF coupler, high-power tests using a high voltage standing wave on a high-Q load circuit wave were carried out, and a 200kW-14 sec CW operation were performed after four days of RF aging. No RF contact defects, unnecessary low-Q value and extraordinary outgassing were observed. This report describes the high-power tests of the RF input coupler.

Journal Articles

Progress of the high current Prototype Accelerator for IFMIF/EVEDA

Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09

Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 $$pi$$.mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.

Journal Articles

The Accomplishment of the engineering design activities of IFMIF/EVEDA; The European-Japanese project towards a Li(d,xn) fusion relevant neutron source

Knaster, J.*; Ibarra, A.*; Ida, Mizuho*; Kondo, Keitaro; Kikuchi, Takayuki; Ohira, Shigeru; Sugimoto, Masayoshi; Wakai, Eiichi; Watanabe, Kazuhito; 58 of others*

Nuclear Fusion, 55(8), p.086003_1 - 086003_30, 2015/08

 Times Cited Count:39 Percentile:1.52(Physics, Fluids & Plasmas)

The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the frame of the Broader Approach Agreement between Europe and Japan, has accomplished in summer 2013, on schedule, its EDA phase with the release of the engineering design report of the IFMIF plant, which is here described. Many improvements of the design from former phases are implemented, particularly a reduction of beam losses and operational costs thanks to the superconducting accelerator concept. In the Test Cell design, the separation of the irradiation modules from the shielding block gaining irradiation flexibility and enhancement of the remote handling equipment reliability and cost reduction. The released IFMIF Intermediate Engineering Design Report, which could be complemented if required concurrently with the outcome of the on-going EVA carried out since the entry into force of IFMIF/EVEDA in June 2007, will allow the decision making on its construction and/or serve as the basis for the definition of the next step, aligned with the evolving needs of our fusion community.

Journal Articles

Status of development of Lithium Target Facility in IFMIF/EVEDA project

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Furukawa, Tomohiro; Hoashi, Eiji*; Fukada, Satoshi*; Suzuki, Akihiro*; Yagi, Juro*; Tsuji, Yoshiyuki*; et al.

Proceedings of Plasma Conference 2014 (PLASMA 2014) (CD-ROM), 2 Pages, 2014/11

In the IFMIF/EVEDA (International Fusion Materials Irradiation Facility/ Engineering Validation and Engineering Design Activity), the validation tests of the EVEDA lithium test loop with the world's highest flow rate of 3000 L/min was succeeded in generating a 100 mm-wide and 25 mm-thick free-surface lithium flow steadily under the IFMIF operation condition of a high-speed of 15 m/s at 250$$^{circ}$$C in a vacuum of 10 $$^{-3}$$ Pa. Some excellent results of the recent engineering validations including lithium purification, lithium safety, and remote handling technique were obtained, and the engineering design of lithium facility was also evaluated. These results will advance greatly the development of an accelerator-based neutron source to simulate the fusion reactor materials irradiation environment as an important key technology for the development of fusion reactor materials.

Journal Articles

Safety managements of the linear IFMIF/EVEDA prototype accelerator

Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi

Fusion Engineering and Design, 89(9-10), p.2066 - 2070, 2014/10

 Percentile:100(Nuclear Science & Technology)

Journal Articles

Status quo of the injector for the IFMIF/EVEDA prototype accelerator

Shinto, Katsuhiro; Ichikawa, Masahiro; Takahashi, Yasuyuki*; Kubo, Takashi*; Tsutsumi, Kazuyoshi; Kikuchi, Takayuki; Kasugai, Atsushi; Sugimoto, Masayoshi; Gobin, R.*; Girardot, P.*; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1009 - 1012, 2014/10

The prototype accelerator is being developed as an engineering validation for the International Fusion Materials Irradiation Facility (IFMIF) equipped with an accelerator-driven-type neutron source for developing fusion reactor materials. This prototype accelerator is a deuteron linear accelerator consisting of an injector, an RFQ, a superconducting linac and their auxiliaries. It aims to produce a CW D$$^+$$ beam with the energy and current of 9 MeV/125 mA. The injector test was completed at CEA/Saclay in 2012 for producing a CW H$$^+$$ beam and a CW D$$^+$$ beam with the energy and current of 100 keV/140 mA. After the beam test at CEA/Saclay, the injector was transported to the International Fusion Energy Research Centre (IFERC) located in Rokkasho, Aomori, Japan. In the end of 2013, installation of the injector was started at IFERC for the injector beam test beginning from summer 2014 in order to obtain better beam qualities to be satisfied with the injection and acceleration of the following accelerators. In this paper, some results of the injector beam test performed at CEA/Saclay and the status quo of the installation of the injector at IFERC are presented.

Journal Articles

Engineering validation and engineering design of lithium target facility in IFMIF/EVEDA project

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Watanabe, Kazuyoshi; Ida, Mizuho*; Ito, Yuzuru; Niitsuma, Shigeto; Edao, Yuki; et al.

Fusion Science and Technology, 66(1), p.46 - 56, 2014/07

 Times Cited Count:4 Percentile:51.53(Nuclear Science & Technology)

Journal Articles

Development of RF input coupler for the IFMIF/EVEDA prototype RFQ linac

Maebara, Sunao; Antonio, P.*; Ichikawa, Masahiro; Takahashi, Hiroki; Suzuki, Hiromitsu; Sugimoto, Masayoshi

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.561 - 563, 2014/06

no abstracts in English

Journal Articles

Activation analyses of air by deuteron beam at 5-9 MeV

Takahashi, Hiroki; Maebara, Sunao; Sakaki, Hironao; Ichikawa, Masahiro; Suzuki, Hiromitsu; Sugimoto, Masayoshi

Progress in Nuclear Science and Technology (Internet), 4, p.261 - 263, 2014/04

An development of accelerator-based neutron irradiation facility is planning to develop materials for a demonstration fusion reactor. To obtain a 14 MeV neutron energy using the neutron-generating D-Li stripping reaction, an injection into liquid lithium flow by a 40 MeV deuteron beam is employed in IFMIF design concept. In the acceleration of deuteron beam, the activation due to the beam loss is critical issue. The activation analyses for the air in an accelerator vault are carried out by PHITS code and DCHAIN code using the experimental data for deuteron induced thick target neutron yield at 5 MeV and 9 MeV for source term.

Journal Articles

IFMIF; Overview of the validation activities

Knaster, J.*; Arbeiter, F.*; Cara, P.*; Favuzza, P.*; Furukawa, Tomohiro; Groeschel, F.*; Heidinger, R.*; Ibarra, A.*; Matsumoto, Hiroshi*; Mosnier, A.*; et al.

Nuclear Fusion, 53(11), p.116001_1 - 116001_18, 2013/11


 Times Cited Count:56 Percentile:1.83(Physics, Fluids & Plasmas)

The IFMIF/EVEDA project under the Broader Approach Agreement between Japan and EU aims at allowing a rapid construction phase of IFMIF in due time. The three main facilities, (1) the Accelerator Facility, (2) the Target Facility and (3) the Test Facility, are the subject of validation activities that include the construction of either full scale prototypes or smartly devised scaled down facilities that will allow a straightforward extrapolation to IFMIF needs. The installation of a Linac of 1.125 MW (125 mA and 9 MeV) of deuterons started in March 2013 in Rokkasho. The world largest liquid Li test loop is running in Oarai with an ambitious experimental programme for the years ahead. A full scale high flux test module that will house $$sim$$ 1000 small specimens developed jointly in Europe and Japan has been constructed in Germany together with its He gas loop. A full scale medium flux test module to carry out on-line creep measurement has been constructed in Switzerland.

Journal Articles

Engineering design of the RF input coupler for the IFMIF prototype RFQ linac

Maebara, Sunao; Palmieri, A.*; Mereu, P.*; Ichikawa, Masahiro; Takahashi, Hiroki; Comunian, M.*; Suzuki, Hiromitsu; Pisent, A.*; Sugimoto, Masayoshi

Fusion Engineering and Design, 88(9-10), p.2740 - 2743, 2013/10

 Times Cited Count:2 Percentile:72.96(Nuclear Science & Technology)

Journal Articles

Activation analyses of air in the accelerator vault of LIPAc building by deuteron beam at 5 MeV and 9 MeV

Takahashi, Hiroki; Maebara, Sunao; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi

JAEA-Conf 2013-002, p.109 - 112, 2013/10

Journal Articles

Development of small specimen test techniques for the IFMIF test cell

Wakai, Eiichi; Kim, B. J.; Nozawa, Takashi; Kikuchi, Takayuki; Hirano, Michiko*; Kimura, Akihiko*; Kasada, Ryuta*; Yokomine, Takehiko*; Yoshida, Takahide*; Nogami, Shuhei*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 6 Pages, 2013/03

Journal Articles

Development of lithium target system in engineering validation and engineering design activity of the International Fusion Materials Irradiation Facility (IFMIF/EVEDA)

Wakai, Eiichi; Kondo, Hiroo; Sugimoto, Masayoshi; Fukada, Satoshi*; Yagi, Juro*; Ida, Mizuho; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Watanabe, Kazuyoshi; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 88(12), p.691 - 705, 2012/12

no abstracts in English

Journal Articles

Overview of materials research and IFMIF-EVEDA under the Broader Approach framework

Nishitani, Takeo; Tanigawa, Hiroyasu; Yamanishi, Toshihiko; Clement Lorenzo, S.*; Baluc, N.*; Hayashi, Kimio; Nakajima, Noriyoshi*; Kimura, Haruyuki; Sugimoto, Masayoshi; Heidinger, R.*; et al.

Fusion Science and Technology, 62(1), p.210 - 218, 2012/07

 Times Cited Count:2 Percentile:85.4(Nuclear Science & Technology)

Recent progress in the material related researches and the IFMIF/EVEDA project, which are carried out under the Broader Approach (BA) framework, is reported. In the International Fusion Energy Research Center (IFERC) project of BA, the R&D building was completed March 2010 at the Rokkasho BA site. R&Ds on reduced activation ferritic/ martensitic (RAFM) steels as structural material, SiC/SiC composites as a flow channel insert material and/or alternative structural material, advanced tritium breeders and neutron multipliers, and tritium technology relevant to the DEMO operational condition are progressed in Japan and EU. In the IFMIF/EVEDA project, the fabrication of the injector for the IFMIF prototype accelerator was completed at the CEA Saclay, and the first proton beam was obtained in May, 2011. The IFMIF lithium target test loop was completed in March 2011, and a lithium flow of 5 m/s was obtained.

Journal Articles

IFMIF/EVEDA; Adjustment of scope and recent technical achievements

Garin, P.*; Sugimoto, Masayoshi; IFMIF/EVEDA Integrated Project Team

Fusion Science and Technology, 62(1), p.219 - 225, 2012/07

 Times Cited Count:8 Percentile:32.85(Nuclear Science & Technology)

IFMIF aims at generating material database for DEMO and future power plants, and Engineering Design and Engineering Validation Activities have been conducted since mid 2007 under the Broader Approach Agreement. So far the main efforts were focused on the validation work to provide information for the engineering design of IFMIF. In December 2010, new scope of the project was accepted to prioritize the validation of accelerator prototype and to extend the duration of its validation test up to mid 2017, while the other activities shall be completed in mid 2013 as the primary plan. The goal of engineering design has been modified to prepare the Intermediate design report. However, a big earthquake in Japan caused to shift project schedule, especially lithium test loop completed in early 2011. Nevertheless major components development has been continued, e.g. first operation of ion injector has been conducted. This article summarizes status of all activities and future plan of the project.

Journal Articles

IFMIF specifications from the users point of view

Garin, P.*; Diegele, E.*; Heidinger, R.*; Ibarra, A.*; Jitsukawa, Shiro; Kimura, Haruyuki; M$"o$slang, A.*; Muroga, Takeo*; Nishitani, Takeo; Poitevin, Y.*; et al.

Fusion Engineering and Design, 86(6-8), p.611 - 614, 2011/10

 Times Cited Count:19 Percentile:11.1(Nuclear Science & Technology)

This paper summarizes the proposals and findings of the IFMIF Specification Working Group established to update the Users requirements and top level specifications for the Facility. Special attention is given to the different roadmaps of fusion path way towards power plants, of materials R&D and of facilities and their interactions. The materials development and validation activities on structural materials, blanket functional materials and non-metallic materials are analyzed and specific objectives and requirements to be implemented in IFMIF are proposed. Emphasis is made in additional potential validation activities that can be developed in IFMIF for ITER TBM qualification as well as for DEMO-oriented mock-up testing.

Journal Articles

Some error studies for interface management in the HEBT of the IFMIF accelerator

Shidara, Hiroyuki; Vermare, C.*; Sugimoto, Masayoshi; Toupet, S.*; Garin, P.*

Fusion Engineering and Design, 86(9-11), p.2674 - 2677, 2011/10

 Percentile:100(Nuclear Science & Technology)

The IFMIF accelerator system is based on two similar beam lines running in parallel. Each D$$^{+}$$ beam of 40 MeV/125 mA is transported by a High Energy Beam Transport (HEBT) line up to the liquid lithium target where neutrons will be produced. On the target, the specifications of the beam footprint mentioned a rectangular shape (20 cm $$times$$ 5 cm]) with a flat-topped homogenious current density profile and small energy spread. As a view point of the boundary condition management for the interface to the Lithium target, we demonstrate and simulate the beam after HEBT for clarifying the beam character on the beam robustness against the misalignment and mis-accelerated condition etc. regarding the effect to the Lithium target. The tolerance on beam axis off-set at HEBT inlet is estimated around $$pm$$0.2 mm. The energy acceleration dependence shows small footprint robustness in case of mis-accelerated situation but better robustness for over-accelerated condition.

Journal Articles

IFMIF's new design; Status after 2 years of EVEDA project

Garin, P.*; Sugimoto, Masayoshi

Journal of Nuclear Materials, 417(1-3), p.1262 - 1266, 2011/10

 Times Cited Count:13 Percentile:19.73(Materials Science, Multidisciplinary)

IFMIF is a major installation in the fusion programme to irradiate and characterize the fusion materials necessary for development of DEMO and the future fusion power plants. The Engineering Validation and Engineering Design Activities launched in mid 2007 in the framework of the Broader Approach agreement between EURATON and Japan comprise four sub-projects: (1) to complete engineering design of IFMIF, (2) to build and operate prototype of low energy part of accelerator up to 9MeV with 125mA beam current, (3) to validate full liquid lithium loop including purification traps and monitoring devices, and (4) to design and manufacture high flux test module of the test cell with testing in relevant conditions. Two years after the official start of the project the most important modifications to the reference design were high energy part of accelerator, lithium target assembly backplate, and high flux test module geometry. The impacts of these changes on the project are summarized.

199 (Records 1-20 displayed on this page)