Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Cabling technology of Nb$$_3$$Sn conductor for ITER central solenoid

Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Uno, Yasuhiro; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.4802404_1 - 4802404_4, 2014/06

 Times Cited Count:25 Percentile:72.88(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_3$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 mm show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.

Journal Articles

Technology development for the construction of the ITER superconducting magnet system

Okuno, Kiyoshi; Nakajima, Hideo; Sugimoto, Makoto; Isono, Takaaki; Kawano, Katsumi; Koizumi, Norikiyo; Hamada, Kazuya; Nunoya, Yoshihiko; Matsui, Kunihiro; Nabara, Yoshihiro; et al.

Nuclear Fusion, 47(5), p.456 - 462, 2007/05

 Times Cited Count:8 Percentile:29.31(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Technology development for the construction of ITER superconducting magnet system

Okuno, Kiyoshi; Nakajima, Hideo; Sugimoto, Makoto; Isono, Takaaki; Kawano, Katsumi; Koizumi, Norikiyo; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Kitamura, Kazunori; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

The ITER superconducting magnet system consists of 18 TF coils, one CS and six Poloidal Field (PF) coils. Among six PTs, Japan, EU and US will be responsible for major part of the superconducting magnets, and Japanese contribution will be the largest, including the following four areas: part of TF conductors, about half (9 out of 19) of TF coil winding packs, most of TF coil structures and part of CS conductor. Since 2004, Japan Atomic Energy Agency (JAEA) started preparation activities for procurement, including manufacturing studies to identify detailed fabrication processes and tools for critical components, such as TF coil winding and case, and manufacturing demonstrations at full scale level on Nb$$_{3}$$Sn strands and conductors and cryogenic structural materials, such as coil case segments and radial plates. Details are described in the following sections.

Journal Articles

Groundwater flow monitoring around the MIU-site using fluid flow tomography method

Matsuoka, Toshiyuki; Semba, Takeshi; Ishigaki, Koichi; Sugimoto, Yoshihiro*; Tanoue, Masayoshi*; Narita, Norifumi*

Nihon Oyo Chishitsu Gakkai Heisei-18-Nendo Kenkyu Happyokai Koen Rombunshu, p.331 - 334, 2006/11

no abstracts in English

Journal Articles

Evaluation of the critical current performance of a Nb$$_{3}$$Al insert

Koizumi, Norikiyo; Nunoya, Yoshihiko; Takayasu, Makoto*; Sugimoto, Makoto; Nabara, Yoshihiro; Oshikiri, Masayuki*; CS Model Coil Test Group

Teion Kogaku, 38(8), p.399 - 409, 2003/08

A Nb$$_{3}$$Al insert was developed to demonstrate the applicability of a Nb$$_{3}$$Al conductor and wind-and-react method to a TF coil of a fusion reactor by artificially applying 0.4% bending strain to the conductor after its heat treatment. The critical current test results show that the effective strains applied to the strands is almost zero. Then, the validity of the react-and-wind method was demonstrated. In addition, while an unexpected strain, which was proportional to electromagnetic force, was observed in the same scale Nb$$_{3}$$Sn conductor, such strain did not exist in the Nb$$_{3}$$Al conductor. This shows a Nb$$_{3}$$Al conductor is suitable to the application to large magnets, such as the TF coil. Furthermore, the effect of the current transfer among the strands on the critical current evaluation is studied by developing a numerical analysis code, KORO. The results figure out that the critical current of a large cable-in-conduit conductor can be easily evaluated assuming the uniform current distribution if the conductance among the strands is 10E5 S/m or less.

JAEA Reports

Geological Structure Modeling Around Mill Tailing Yard

Takano, Hitoshi*; Sugimoto, Yoshihiro*; Yamashita, Tadashi*; Yamada, Naoyuki*

JNC TJ6420 2003-011, 127 Pages, 2003/02

JNC-TJ6420-2003-011.pdf:4.56MB

Drilling and high resolution electrical survey was carried out to make a geological structure model around mill tailing yard. Following by drill investigation, Distribution of the granite which became fragility was confirmed by the development of fractures with hydrothermal vein. However, fresh bedrock is distributed deeper than 40m. Permeability of weathering granite is about in 1.15$$times$$10$$^{-6}$$m/sec. The value agrees previous findings. In fresh granite, permeability is 4.33$$times$$10$$^{-7}$$m/sec, and it value is larger than existing data. It is for developing of fractures in fresh granite. At high resolution electrical survey, analysis is done by 3 dimensions. By analyzing it with 3 dimensions, good resistivity distribution was provided. From resistivity distribution, tailing, weathered granite or sedimentary rock and fresh granite are classified. Resistivity distribution was taken out from lines or seismic exploration refraction method, and compared between two methods. As a result, low resistivity region is fitted low velocity zone and high resistivity region is fitted high velocity zone. Topography and 4 geological models are created. These models are output as versatile text data to show relation of a coordinate and the point of contact.

Oral presentation

Engineering developments for the fabrication of the ITER superconducting coils

Nakajima, Hideo; Sugimoto, Makoto; Isono, Takaaki; Koizumi, Norikiyo; Hamada, Kazuya; Nunoya, Yoshihiko; Kawano, Katsumi; Nabara, Yoshihiro; Abe, Kanako*; Okuno, Kiyoshi

no journal, , 

no abstracts in English

Oral presentation

Study on hydrogeological structure around the Mizunami Underground Research Laboratory (MIU) site using self-potential method

Tokuyasu, Shingo; Matsuoka, Toshiyuki; Mizunaga, Hideki*; Sugimoto, Yoshihiro*

no journal, , 

no abstracts in English

Oral presentation

Progress in procurement for ITER superconductors; Development of center solenoid cable

Nunoya, Yoshihiko; Takahashi, Yoshikazu; Nabara, Yoshihiro; Tsutsumi, Fumiaki; Oshikiri, Masayuki; Uno, Yasuhiro; Shibutani, Kazuyuki*; Ishibashi, Tatsuji*; Watanabe, Kazuaki*; Sugimoto, Masahiro*; et al.

no journal, , 

no abstracts in English

Oral presentation

Development of Nb$$_{3}$$Sn cables for ITER central solenoid (CS) coil

Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Uno, Yasuhiro; Shibutani, Kazuyuki*; et al.

no journal, , 

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_{3}$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.

Oral presentation

Development and production of cables for ITER

Takahashi, Yoshikazu; Nabara, Yoshihiro; Nunoya, Yoshihiko; Suwa, Tomone; Tsutsumi, Fumiaki; Oshikiri, Masayuki; Ozeki, Hidemasa; Shibutani, Kazuyuki*; Kawano, Katsumi; Kawasaki, Tsutomu*; et al.

no journal, , 

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_{3}$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The cable with a shorter twist pitch shows no degradation of Tcs against to electromagnetic load cycles. However, it is difficult to make the cable, because the diameter of the cable with shorter twist pitch is larger and the cable has to compact more. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies and production will be described in this paper.

12 (Records 1-12 displayed on this page)
  • 1