Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawano, Takahiro*; Mizuta, Naoki; Ueta, Shohei; Tachibana, Yukio; Yoshida, Katsumi*
JAEA-Technology 2023-014, 37 Pages, 2023/08
Fuel compact for High Temperature Gas-cooled Reactor (HTGR) is fabricated by calcinating a matrix consisting of graphite and binder with the coated fuel particle. The SiC-matrixed fuel compact uses a new matrix made of silicon carbide (SiC) replacing the conventional graphite. Applying the SiC-matrixed fuel compact for HTGRs is expected to improve their performance such as power densities. In this study, the sintering conditions for applying SiC as the matrix of fuel compacts for HTGR are selected, and the density and thermal conductivity of the prototype SiC are measured.
Hirota, Noriaki; Funamoto, Kodai*; Tachibana, Yukio
Zairyo, 72(3), p.255 - 261, 2023/03
For the purpose of developing metallic materials with excellent corrosion resistance under boiling sulfuric acid environment, the coated materials were evaluated for their corrosion resistance and the differences in surface morphology were investigated. As a result, the corrosion resistance of SUS304 coated and sintered eight times by chemical densified coating method (S-ZAC) was maintained at the point after 12h corrosion test, but the corrosion rate rapidly increased after 100h corrosion test. The cross-sectional microstructural analysis of the specimens showed that only a small amount of SiO remained on the surface, while CrO completely disappeared. The mechanism of film delamination in S-ZAC is assumed to be due to the thermal expansion caused by heating, which resulted in curvature of the thick film and cracks at the CrO and SiO interfaces. On the other hand, SUS304 coated with higher density of CrO by repeating the coating and sintering eleven times (MS-ZAC) showed excellent corrosion resistance as well as SiC even after 100h corrosion test. The results of cross-sectional microstructuCrO particle layer, in addition to the thinning of the entire film.
Aihara, Jun; Kuroda, Masatoshi*; Tachibana, Yukio
Mechanical Engineering Journal (Internet), 9(4), p.21-00424_1 - 21-00424_13, 2022/08
It is important to improve oxidation resistance of fuel for huge oxygen ingress into core to improve safety of high temperature gas-cooled reactors (HTGRs), because almost volume of cores of HTGRs consist of graphite. In this study, simulated oxidation resistant fuel elements, of which matrix is mixture of SiC and graphite, has been fabricated by hot press method. In order to maintain structural integrity of fuel element under accident conditions, high-strength fuel elements should be developed. In order to identify optimal hot press conditions for preparing high-strength fuel elements, effect of hot press conditions on mechanical strength properties of fuel elements should be evaluated quantitatively. In the present study, response surface model, which represents relationship between hot press conditions and mechanical strength properties, has been constructed by introducing statistical design of experiments (DOE) approaches, and optimal hot press conditions were estimated by model.
Aihara, Jun; Kuroda, Masatoshi*; Tachibana, Yukio
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 9 Pages, 2021/08
To maintain the structural integrity of fuel elements for a high-temperature gas-cooled reactor (HTGR) under disaster conditions, strong and oxidation-resistant fuel elements should be further developed. The HTGR fuel elements employ a hot-pressed silicon carbide (SiC)/carbon (C) mixed matrix to improve the oxidative resistance. Hot-press conditions such as pressure, temperature, and duration would be one of the factors that affect the strength of the HTGR fuel elements. To identify the optimal hot-press conditions for preparing the high-strength fuel elements, modelling their effects on the mechanical-strength properties of the HTGR fuel elements should be evaluated quantitatively. In this study, the response surface model, which represents the relationship between the hot-press conditions and the mechanical-strength properties, has been constructed by introducing statistical design-of-experiment approaches.
Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:44 Percentile:96.99(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Hirota, Noriaki; Takeda, Kiyoko*; Tachibana, Yukio; Masaki, Yasuhiro*
Zairyo To Kankyo, 70(3), p.68 - 76, 2021/03
Corrosion resistance of stainless steels and Ni-based alloys were evaluated in a sulfuric acid decomposition gas at high temperature. The evaluation were carried out in an environment simulated in the sulfuric acid decomposition reaction vessel for thermochemical hydrogen production process (IS process). Their corrosion films were also analyzed for better understanding of the corrosion behavior. As a result, after 100 hour corrosion test, Ni-based alloy containing 2.4% Si showed good corrosion resistance. Ferritic stainless steel containing 3% Al (3Al-Ferrite) showed better corrosion resistance. Its corrosion rate was lower than that of SiC (0.1mm/year), which is a candidate material for the sulfuric acid decomposition reaction vessel. On the other hand, Ni-based alloy pre-filmed with AlO is prepared as the relative corrosion film of 3Al-Ferrite. Its corrosion rate was significantly higher than that of 3Al-Ferrite. As the result of EPMA analysis of these oxide films, Ni-based alloy containing 2.4% Si formed Si oxide film which had some cracks after the long term corrosion test. Therefore S penetrated into grain boundaries of the matrix through the oxide film. 3Al-Ferrite formed a thin and uniform AlO film, and the penetration of S into the grain boundaries was not observed. AlO pre-film of Ni-based alloy also showed S penetration in the matrix because the AlO pre-film had many small defects originally. The corrosion oxide film of 3Al-Ferrite consisted of only -AlO, while the AlO pre-film consist of -AlO and -AlO. Those results suggest that the better corrosion resistance of 3Al-Ferrite is due to the uniform formation of dense -AlO film at the early stage of the corrosion.
Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.
Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Mizuta, Naoki; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*
Journal of Nuclear Science and Technology, 58(1), p.107 - 116, 2021/01
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)The concept of a Pu-burner high temperature gas-cooled reactor (HTGR) has been proposed for purpose of more safely reducing amount of recovered Pu. This concept employs coated fuel particles (CFPs) with ZrC coated PuO-YSZ kernel and with tristructural (TRISO) coating for very high Pu burn-up and high nuclear proliferation resistance. In this report, we investigate the microstructure of the region that includes the surface of an as-fabricated CeO-YSZ kernel simulating PuO-YSZ kernel. We found both Zr-rich grains and Ce-rich grains to be densely distributed in that region including surface of CeO-YSZ kernel. On the other hand, it has been reported that there was a porous region near surface of the CeO-YSZ kernel of Batch I. This finding confirms that Ce-rich grains near surface of CeO-YSZ kernels coated with ZrC layers have been corroded during the deposition of the ZrC layer, whereas the Zr-rich grains were hardly affected.
Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.
Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02
Times Cited Count:1 Percentile:11.54(Nuclear Science & Technology)The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.
Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio
JAEA-Data/Code 2019-018, 22 Pages, 2020/01
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.
Aihara, Jun; Yasuda, Atsushi*; Ueta, Shohei; Ogawa, Hiroaki; Honda, Masaki*; Ohira, Koichi*; Tachibana, Yukio
Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(4), p.237 - 245, 2019/12
Development of fabrication and inspection technologies of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors (HTGRs) in severe oxidation accident was carried out. Simulated coated fuel particles (CFPs), alumina particles, were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter simulated oxidation resistant fuel elements with SiC/C mixed matrix. Simulated oxidation resistant fuel elements with matrix whose Si/C mole ratio is 1.00 were fabricated. Failure fraction of CFPs in fuel elements is one of very important inspection subjects of HTGR fuel. It is essential that CFPs are extracted from fuel elements without additional failure. Development of method for extraction of CFPs was carried out. Desolation of SiC by KOH method or pressurized acidolysis method should be applied to extraction of CFPs.
Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Mizuta, Naoki; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*
Journal of Nuclear Materials, 522, p.32 - 40, 2019/08
Times Cited Count:3 Percentile:30.79(Materials Science, Multidisciplinary)In order to realize Pu-burner high temperature gas-cooled reactor (HTGR), coated fuel particles (CFPs) with PuO-yittria stabilized zirconia (YSZ) fuel kernel coated with ZrC is employed for high nuclear proliferation resistance and very high burn-up. Japan Atomic Energy Agency (JAEA) have carried out ZrC coatings of particles which simulated PuO-YSZ kernels (CeO-YSZ particles or commercially available YSZ particles). Ce was used as simulating element of Pu. In this manuscript, microstructures of ZrC coated CeO-YSZ or YSZ particles were reported.
Hirota, Noriaki; Kasahara, Seiji; Iwatsuki, Jin; Imai, Yoshiyuki; Ohashi, Hirofumi; Yan, X.; Tachibana, Yukio
Zairyo To Kankyo, 68(6), p.137 - 142, 2019/06
New corrosion test equipment for high temperature gas of decomposed sulfuric acid was manufactured in order to ascertain flow rate of sulfuric acid in the piping, occurrence of sulfuric acid decomposition reaction in the equipment, and temperature distribution inside the furnace tube. The flow rate of the sulfuric acid solution was constantly measured using an ultrasonic flowmeter. The SO concentration at the inlet of the test equipment was almost the same as that at the inlet of the sulfuric acid decomposer in the hydrogen production plant assuming a high-temperature gas cooled reactor hydrogen-power cogeneration system (GTHTR300C). On the other hand, during a test, leakage of sulfuric acid occurred from the fitting part at the outlet side. Hence the temperature distribution of the fitting part at the outlet side was investigated using fluid analysis. As a result, it was found that the temperature at the fitting was low enough to use fluorine joint grease when the distance was 0.05 m or more away from the outlet side pipe. An improved furnace tube was manufactured and the temperature was measured again at fitting part of the outlet side. The temperature was lower that the temperature limit of the joint grease and almost the same as the temperature distribution in the fluid analysis, and leakage of sulfuric acid has not occurred to date.
Aihara, Jun; Honda, Masaki*; Ueta, Shohei; Ogawa, Hiroaki; Ohira, Koichi*; Tachibana, Yukio
Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(1), p.29 - 36, 2019/03
Japan Atomic Energy Agency carried out development of fabrication technology of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors in serious oxidation accident, based on precursor research in former JAEA. Dummy coated fuel particles (alumina particles) were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter dummy oxidation resistant fuel elements with SiC/C mixed matrix. We fabricated dummy oxidation resistant fuel elements with matrix whose Si/C mole ratio (about 0.551) is three times as large as that in precursor research. Si peak was not detected by X-ray diffraction of matrix. Better oxidation resistant was confirmed with oxidation test in 20% O at 1673 K than that of ordinal fuel compact with ordinal graphite/carbon matrix. All dummy coated fuel particles were held in specimen after 10 h oxidation.
Ueta, Shohei; Aihara, Jun; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*
Mechanical Engineering Journal (Internet), 5(5), p.18-00084_1 - 18-00084_9, 2018/10
To develop the security and safety fuel (3S-TRISO fuel) for Pu-burner high temperature gas-cooled reactor (HTGR), R&D on zirconium carbide (ZrC) directly coated on yttria stabilized zirconia (YSZ) has been started in the Japanese fiscal year 2015. As results of the direct coating test of ZrC on the dummy YSZ particle, ZrC layers with 18 - 21 microns of thicknesses have been obtained with 0.1 kg of particle loading weight. No deterioration of YSZ exposed by source gases of ZrC bromide process was observed by Scanning Transmission Electron Microscope (STEM).
Fukaya, Yuji; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio; Okamoto, Koji*
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 9 Pages, 2018/10
The research on introduction scenarios of Pu-burner High Temperature Gas-cooled Reactor (HTGR) of Japan has been performed based on the "Long-term Energy Supply and Demand Outlook" released by the Ministry of Economy, Trade and Industry (METI) of Japan in 2015. In the perspective, the electricity generation capacity of nuclear power generation reduces from 50 GWe (peak around 2010) to 30 GWe in 2030. To maintain the capacity, light water reactors (LWRs) should be introduced from 2025 to 2030. After 2030, HTGRs, which are superior to LWRs from the viewpoint of safety and economy, will be introduced to fill the capacity and incinerate plutonium. We assumed introduction of U fueled HTGR as well. The Pu-burner reactor will be introduced with the priority to incinerate separated plutonium by reprocessing. Moreover, we also evaluated hydrogen generation and its effect on CO reduction. As a result, effective plutonium incineration and CO reduction effect are confirmed.
Ueta, Shohei; Aihara, Jun; Mizuta, Naoki; Goto, Minoru; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10
The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO) and yttria stabilized zirconia (YSZ) as an inert matrix. Especially, a zirconium carbide (ZrC) coating is one of key technologies of the 3S-TRISO, which performs as an oxygen getter to reduce the fuel failure due to internal pressure during the irradiation. R&Ds on ZrC coating directly on the dummy CeO-YSZ kernel have been carried in the Japanese fiscal year 2017. As results of ZrC coating tests by the bromide chemical vapor deposition process, stoichiometric ZrC coatings with 3 - 18 microns of thicknesses were obtained with 0.1 kg of particle loading weight.
Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju; Ohashi, Hirofumi; Kubo, Shinji; Inaba, Yoshitomo; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; et al.
JAEA-Technology 2018-004, 182 Pages, 2018/07
Research and development on High Temperature Gas-cooled Reactor (HTGR) in Japan started since late 1960s. Japan Atomic Energy Agency (JAEA) in cooperation with Japanese industries has researched and developed system design, fuel, graphite, metallic material, reactor engineering, high temperature components, high temperature irradiation and post irradiation test of fuel and graphite, high temperature heat application and so on. Construction of the first Japanese HTGR, High Temperature engineering Test Reactor (HTTR), started in 1990. HTTR achieved first criticality in 1998. After that, various test operations have been carried out to establish the Japanese HTGR technologies and to verify the inherent safety features of HTGR. This report presents several system design of HTGR, the world-highest-level Japanese HTGR technologies, JAEA's knowledge obtained from construction, operation and management of HTTR and heat application technologies for HTGR.
Kunitomi, Kazuhiko; Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju
Nihon Genshiryoku Gakkai-Shi ATOMO, 60(4), p.236 - 240, 2018/04
High temperature gas-cooled reactor (HTGR) is a graphite-moderated and helium-gas-cooled thermal-neutron reactor that has excellent safety features and can produce high temperature heat of 950C. It is expected to use for various heat applications as well as for electricity generation to reduce carbon dioxide emission. Japan Atomic Energy Agency (JAEA) has been promoted research and development to demonstrate the HTGR safety features using High temperature engineering test reactor (HTTR) and it's heat application. JAEA are also conducting the action to international deployment of Japanese HTGR technologies in cooperation with industries-government-academia. This paper reports status of the research and development of HTGR and domestic and international collaborations.
Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu*; Horii, Shoichi*; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.
Nuclear Engineering and Design, 329, p.223 - 233, 2018/04
Times Cited Count:20 Percentile:89.78(Nuclear Science & Technology)The pre-licensing design of an HTGR cogeneration test plant to be coupled to JAEA's existing test reactor HTTR is presented. The plant is designed to demonstrate the system of JAEA commercial plant design GTHTR300C. With construction planned to be completed around 2025, the test plant is expected to be the first-of-a-kind nuclear system operating on two of the advanced energy conversion systems attractive for the HTGR closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.